Mit dem Universum stimmt was nicht

Expansion des Universums

Astrophysiker sind angesichts neuer Daten absolut ratlos: Irgendwas stimmt mit dem Universum nicht. Müssen wir unsere Annahmen über die Physik über den Haufen werfen? 

Irgendwas stimmt mit dem Universum nicht. Den Eindruck könnte man derzeit auch jedes Mal bekommen, wenn man sich die Nachrichten ansieht. Aber darum geht es heute nicht, es geht um die Kosmologie. Neue Daten des Hubble Teleskops zeigen: Unser Verständnis des Universums passt hinten und vorne nicht zusammen. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Alles begann mit dem Urknall

Um das zu verstehen, gibt es zunächst ein paar grundsätzliche Fakten über das, was wir glauben, über die Kosmologie zu wissen. Das Universum begann nach herrschender Ansicht vor etwa 13,8 Milliarden Jahren mit dem Urknall. Alles, was es gibt, alles woraus Planeten bestehen, Sterne bestehen, alles woraus Ihr besteht, war in einem kleinen winzigen Punkt, einer sogenannten Singularität, zusammengequetscht. Zumindest die Grundlage dafür. Und aus ominösen Gründen begann diese Singularität plötzlich zu expandieren. Das Universum hat sich im Urknall selbst geboren. Am Anfang war es so klein wie eine Erbse, dann wie ein Keks und dann immer größer und größer.

Dunkle Energie treibt Expansion des Universums voran

Seitdem expandiert das Universum. Ob sich diese Expansion irgendwann mal abschwächen wird? Immerhin ist der Urknall fast 14 Milliarden Jahre her. Aber tatsächlich beschleunigt sich die Expansion des Universums – die Galaxien bewegen sich mit einer immer schnelleren Geschwindigkeit voneinander weg. Das ist unerklärlich und deswegen haben die Astrophysiker das Konzept der Dunklen Energie entwickelt. Es muss eine rätselhafte Kraft geben, die die Beschleunigung der Expansion antreibt. Was Dunkle Energie aber ist, weiß kein Mensch. Aber es muss sie in der ein oder anderen Form geben, ansonsten würde das Universum nicht immer schneller wachsen. 

Was bezeichnet die Hubble-Konstante?

So weit, so gut, das ist ganz grob zusammengefasst der aktuelle Stand der Kosmologie (in absoluter Kurzform natürlich). Der Vater der Kosmologie ist Edwin Hubble, der berühmteste amerikanische Astronom, der im frühen 20. Jahrhundert entdeckte, dass sich die meisten Galaxien voneinander weg bewegen. Nach ihm sind zwei Dinge benannt, die für diesen Beitrag wichtig sind: Die Hubble-Konstante und das Hubble-Weltraumteleskop. Die Hubble-Konstante bezeichnet die aktuelle Rate der Expansion des Universums. Da die Beschleunigung der Expansion sich verändert, braucht man diese Konstante und kann sie nicht einfach mit einer Zahl angeben wie z.B. 80 km/h oder so.

Edwin Hubble am Teleskop

Das Hubble-Teleskop war lange das beste Weltraumteleskop, das die Menschheit hatte – und es ist immer noch im Einsatz, obwohl jetzt bald das neue James-Webb-Teleskop seinen normalen Betrieb aufnehmen wird. Durch das Hubble-Teleskop haben wir viel über die Expansionsrate des Kosmos und die Position einzelner Galaxien gelernt, so dass man die Hubble-Konstante immer weiter präzisieren konnte. 

Auswertung der Hubble-Daten zeigt: Da stimmt was nicht

Aber jetzt kommt’s: Ein Forscherteam hat in mühsamer Arbeit nun Daten des Hubble-Teleskops ausgewertet, die seit über 30 Jahren erhoben wurden. Und diese Auswertung von Daten hat ergeben: Alles, was wir über die Expansion des Kosmos zu wissen glauben, passt nicht zusammen. Irgendwas kann nicht stimmen oder wir haben ein essentielles Detail noch nicht gefunden. Zwischen der Expansionsrate des Universums aktuell und der Expansionsrate des frühen Universums kurz nach dem Urknall gibt es eine Diskrepanz, die sich weder mit Theorien über die Dunkle Energie noch mit dem aktuellen Wissen über die Hubble-Konstante erklären lassen. Keine unserer vorhandenen kosmologischen Theorien können ansatzweise erklären, weshalb die Daten des Hubble-Teleskops diesen Unterschied zwischen den Expansionsgeschwindigkeiten des Universums in seinen jeweiligen Entwicklungsstufen ausgespuckt haben. 

Die von Hubble untersuchten Galaxien

Bei solchen Erkenntnissen, die das Verständnis der Astrophysik grundsätzlich durcheinander bringen, fragt man normalerweise immer zuerst: Das war doch bestimmt ein Messfehler, oder?! Aber in diesem Fall lässt sich das ausschließen. Angesichts der großen Hubble-Stichprobe besteht nur eine Chance von eins zu einer Million, dass sich die Astronomen aufgrund eines Messfehlers irren. Das Forscherteam hat über 40 Supernova-Explosionen ausgewertet, die über den gesamten Zeitraum von Hubbles Mission stattgefunden haben. Supernovae, die Explosion von Sternen am Ende ihrer Lebensspanne, eignen sich perfekt für Entfernungsbestimmungen im Weltraum. Der Leiter des Forschungsteams, Nobelpreisträger Adam Riess vom Space Telescope Science Institute sagt: “Wir haben eine vollständige Stichprobe aller Supernovae, die das Hubble-Teleskop in den letzten Jahrzehnten gesehen hat. Wir erhalten die präziseste Messung der Expansionsrate des Universums durch den Goldstandard der Teleskope.”

Ein Buch von Astro-Comics mit dem Namen Astro-Comics erklärt das Sonnensystem

Wollt ihr mehr über den Weltraum erfahren?

Dann holt euch das erste Buch von Astro Tim: Astro Comics erklärt das Sonnensystem

Unbekannter Faktor sorgt für Diskrepanz

Wie hoch ist die Diskrepanz genau? Den Ergebnissen von Professor Riess zufolge liegen die Hubble-Messungen für die Expansion des Kosmos im nahen Bereich bei etwa 73 Kilometern pro Megaparsec. Berücksichtigt man jedoch die Beobachtungen des tiefen, frühen Universums, verlangsamt sich die Rate auf etwa 67,5 Kilometer pro Megaparsec. Megaparsec sind eine astronomische Längeneinheit für wirklich wirklich große Maßstäbe. Jetzt ist natürlich die Frage, wie diese erhebliche Diskrepanz zu erklären ist? Und warum selbst diese größte Auswertung von Hubble-Daten hinsichtlich der Expansionsrate keine Klarheit bezüglich der Hubble-Konstante gebracht hat. 

Im Prinzip bedeutet das, dass es einen gigantischen kosmologischen Faktor gibt, den wir einfach nicht kennen. Irgendein Faktor der Physik, der für diese extrem unterschiedlichen Ausbreitungsraten im lokalen und im frühen Universum sorgt, ist uns noch absolut unbekannt. Interessanterweise sieht Professor Riess das ganze locker. Er sagt: “Es ist am besten, die Expansionsrate nicht nach ihrem genauen Wert hinsichtlich der Zeit zu betrachten, sondern nach ihren Auswirkungen. Es ist mir egal, wie hoch der Expansionswert genau ist, aber ich möchte ihn nutzen, um etwas über das Universum zu lernen.”

Bringt James Webb die Auflösung?

Das neue James-Webb-Teleskop wird den Kosmos in noch nie dagewesener Genauigkeit untersuchen können. Es wird wie Hubble Entfernungsmessungen anhand von Supernovae und sogenannten Cepheiden vornehmen. Das sind Sterne, bei denen es extremst periodische Schwankungen in ihrer Helligkeit gibt. Anhand der Beziehung zwischen Leuchtkraft und Periodendauer dieser Sterne kann man sie zur Entfernungsmessung verwenden. James Webb wird uns vermutlich eine Antwort auf das Hubble-Paradoxon liefern und damit unser Verständnis des Kosmos revolutionieren. 

Cepheiden Periode

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Kommentar verfassen