Hawking-Punkte: Hinweis auf anderes Universum gefunden

Cyclic Conformal Cosmology Theorie

Ist und war unser Universum immer das einzige? Es gibt jetzt einen handfesten Hinweis dafür, dass vor unserem Universum bereits ein anderes existiert hat. 

Jedem Anfang wohnt ein Zauber inne, sagte schon Hermann Hesse. Und im Falle unseres Universums ist das definitiv wahr, denn der Anfang des Kosmos war spektakulär. Laut den meisten Kosmologen begann alles in einem singulären Ereignis namens Urknall. Vor circa 13,8 Milliarden Jahren war das gesamte Universum, all die Materie und Energie, aus der Planeten, Sterne, ganze Galaxien und auch Ihr besteht, in einem winzigen Punkt zusammengequetscht, der keinerlei Ausdehnung besaß. Er war also noch nicht mal einen Millimeter groß, eine sogenannte Singularität. Neben dem Punkt war nichts und aus ominösen Gründen begann er dann zu expandieren. Der Urknall war die Geburt des Universums. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Der Start mit dem Uratom

Entgegen des Namens gab es aber keinen Knall. Der Begriff Urknall wurde vielmehr von den Kritikern der Theorie erfunden, um sie lächerlich zu machen. Im frühen 20. Jahrhundert stellte der Physiker und Priester George Lemaître aus Belgien die Theorie eines expandierenden Universums, das in einem singulären Ereignis begann, auf und nannte das ganze “Uratom”. Da damals aber noch die gesamte physikalische Fachwelt, inklusive Albert Einstein, von einem statischen Universum ausging, das sich nicht vergrößert, fanden alle Lemaîtres Theorie unsinnig und wollten ihn mit dem Begriff “Urknall” diskreditieren. Ein schönes Beispiel dafür, dass Wissenschaft sich immer weiter entwickelt und gute Wissenschaft sich dadurch auszeichnet, sich selbst und den Status Quo zu hinterfragen. 

Foto von den drei Wissenschaftlern Millikan, Lemaître und Einstein
Die drei Wissenschaftler Millikan, Lemaître und Einstein

Natürlich ist auch heute die Urknalltheorie nicht in Stein gemeißelt, auch wenn sie derzeit die beste Erklärung für die Entwicklung des Kosmos ist, die wir haben. Aber es gibt viele offene Fragen, vor allem: Was war vor dem Urknall und wie wird der Kosmos enden? Das ist schwer herauszufinden, doch was Forscher jetzt entdeckt haben, wird euch aus den Socken hauen, versprochen! 

Das Modell des Cyclic Conformal Cosmology

Am Anfang der Forschung stand eine Hypothese vom berühmten Mathematiker und Physiker Roger Penrose. Er hat ein kosmologisches Modell namens Cyclic Conformal Cosmology, kurz CCC, entwickelt. Im Prinzip beschreibt er damit ein zyklisches Universum, also ein Universum, das niemals aufhört, weil es immer wieder von vorne anfängt. Die Idee ist nicht neu. Sicherlich habt Ihr schon mal vom Big Bounce gehört, also der kosmologischen Theorie, die besagt, dass unser Universum weiter expandiert, bis es dann irgendwann in einen Schrumpfprozess übergeht und wieder zu einer winzigen Singularität wird. 

Cyclic Conformal Cosmology
Cyclic Conformal Cosmology: Es gab und gibt mehrere, aufeinander folgende Universen

Aber Penroses CCC-Theorie ist anders, den kosmischen Schrumpfprozess gibt es dort nicht. Er stellt sich das Ganze wie folgt vor: Das Universum wächst und ist irgendwann so riesig, dass schon längst alle Sterne gestorben und die letzten Schwarzen Löcher verdampft sind durch die sogenannte Hawking-Strahlung. Alles, was je existierte, hat sich in diesem ultimativen Endstadium des Kosmos aufgelöst. Die Entfernungen sind so unvorstellbar groß, dass selbst das Konzept der Raumzeit hinfällig wird. Das Universum ist nur noch ein eigenschaftsloser, undefinierbarer Blob. 

Expansion des Kosmos nimmt zu

Der Kosmos verliert im Endstadium der Expansion all seine Eigenschaften, selbst seine Größe und ist dadurch de facto wieder zu einer Singularität geworden. In diesem Stadium sind nun die Bedingungen für einen neuen Kosmos gegeben. Penroses CCC-Idee ist ein zyklisches Universum, das niemals schrumpft, sondern nur wächst. Und das passt wunderbar zu den Beobachtungen, die wir derzeit über den Kosmos machen. 

T-Shirt Astro-Tim: Was genau hast du nicht verstanden?

Nichts verstanden? Macht nicht’s!

Hol dir jetzt dieses nerdige T-Shirt nach Hause!

Man hat festgestellt, dass die Expansion des Kosmos nicht abnimmt, sondern immer schneller wird. Vorausgesetzt, wir leben wirklich in Penroses CCC-Universum, müsste man das nicht irgendwie überprüfen können? Vielleicht irgendwelche schwachen Rückstände des vorherigen, nun gestorbenen Universums aufspüren? Wie geisterhafte Spuren aus einem vergangenen Leben?

B-Modes in der kosmischen Hintergrundstrahlung

Die geisterhaften Beweise konnten von Forschern tatsächlich aufgespürt werden. Sie zeigen sich in Form von wirbelnden Polarisationsmustern, den so genannten B-Modes, in der kosmischen Hintergrundstrahlung. Klingt kompliziert, deswegen dröseln wir das mal komplett auf. Was ist die kosmische Hintergrundstrahlung? Ihr kennt das, wenn man morgens aufsteht, braucht man erst mal ein wenig Zeit, um in Fahrt zu kommen. Nicht anders ging es dem Kosmos. Erst ungefähr 380.000 Jahre nach dem Urknall war das Universum bereit zu starten. Ihm ging genau in diesem Moment im wahrsten Sinne des Wortes ein Licht auf, das bedeutet, dass plötzlich Strahlung ausgesendet wurde, genauer gesagt: die kosmische Mikrowellenstrahlung. 

Das Universum wurde dadurch durchsichtig. Bis zu diesem Moment können wir zurückschauen. Wir sehen dort eine gigantische uns überall umgebende Wand von eben dieser Mikrowellenstrahlung. Man nennt dies die kosmische Hintergrundstrahlung. In dieser Hintergrundstrahlung sehen wir Strahlungs- und Temperaturunterschiede aus dem frühesten Universum und vielleicht auch Abdrücke aus dem Vorgängeruniversum. Denn die These von Roger Penrose und anderen Forschern ist, dass die eben erwähnen B-Modes, diese Polarisationsanomalien in der Hintergrundstrahlung Überbleibsel von Schwarzen Löchern aus einem toten Universum sind. 

Diagramm von B-Modes in der Hintergrundstrahlung
B-Modes in der kosmischen Hintergrundstrahlung

Anomalien in der Hintergrundstrahlung

Konkret geht es um 20 solcher B-Modes, die von einem Mikrowellensensor namens BICEP-2, der in der Antarktis aufgebaut ist, im Jahr 2014 gesammelt wurden. Penrose geht davon aus, dass diese Anomalien in der Hintergrundstrahlung sogenannte Hawking-Punkte sind. Schwarze Löcher sind die faszinierendsten und auch langlebigsten Objekte im Kosmos. Viele dieser Schwerkraftmonster werden alles andere im Kosmos, jeden Stern, jede Galaxie, überdauern. Doch wie Stephen Hawking herausfand, ist selbst das nicht für immer. Schwarze Löcher verdampfen. Sie verlieren in einem langsamen Tempo Masse. Und wie? Im Weltraum finden sich permanent Paare von Teilchen und Anti-Teilchen – wenn die sich treffen, löschen sie sich gegenseitig aus.

Aber was ist, wenn so ein Teilchen-Anti-Teilchen-Pärchen genau auf der Grenze des Schwarzen Lochs entsteht, hinter der nichts mehr entkommen kann, dem sogenannten Ereignishorizont. Dann kann es passieren, dass das Teilchen auf der sicheren Seite außerhalb des Ereignishorizonts steht, aber das Anti-Teilchen auf der falschen Seite und nun in das Zentrum des Schwarzen Lochs gesogen wird. Das Anti-Teilchens hat allerdings eine negative Energie, die Masse des Schwarzen Lochs nimmt dann ab. Das dem Schlund entkommene Teilchen hingegen wird als Hawking-Strahlung fortgeschleudert. Also kurzgesagt: Ein masseverringerndes Anti-Teilchen fällt ins Schwarze Loch, das theoretisch den Effekt ausgleichende Teilchen wird hingegen weggeschleudert, sodass das Schwarze Loch insgesamt leichter wird. Die Hawking-Strahlung ist also sowas wie Weight Watchers für Schwarze Löcher.

Dieser Prozess des Verdampfens durch Hawking-Strahlung zieht sich über Ewigkeiten. Wie gesagt, Schwarze Löcher werden noch als letzte Objekte da sein, wenn bereits alles andere gestorben ist. Aber, wenn man ein Schwarzes Loch Milliarden Jahre lang beobachten und aufzeichnen könnte, dann würde sich die Hawking-Strahlung in ihrer Summe als deutlicher Effekt spürbar machen. Das wäre dann ein Hawking-Punkt. 

Schwarze Löcher hinterlassen Hawking-Punkte

Kleiner Einwand: Schwarze Löcher können wir ja gar nicht so lange beobachten. Wirklich nicht? Vielleicht ja doch, wenn die Schwarzen Löcher aus dem vorherigen Universum ihre Hawking-Punkte in der Hintergrundstrahlung hinterlassen haben. Genau das ist Penroses Idee: dass die Nachwirkung des Verdampfens der Schwarzen Löcher den Tod des einen Universums überdauert und in das neue hinüberstrahlt und dann als Artefakt in der Hintergrundstrahlung abgebildet wird. 

Es klingt unglaublich, aber die Anomalien in der Hintergrundstrahlung könnten das Echo von verstorbenen Schwarzen Löchern aus einem vergangenen Universum sein.

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

James Webbs kuriose Galaxien: Doch kein Urknall?

Darstellung von James-Webb-Teleskop vor dem Urknall

Hat das James-Webb-Teleskop den Urknall widerlegt? Das wird nun immer öfter behauptet und einige Entdeckungen könnten tatsächlich darauf hindeuten. 

Es ist vielleicht DIE größte kosmische Frage überhaupt: Wie hat eigentlich der Weltraum begonnen? Es ist doch so: Man schaut nachts in den Sternenhimmel und ist überwältigt davon, man fühlt sich ratlos und ist erstaunt darüber, dass diese wunderbare Welt existiert. Nur, wie kam das alles überhaupt? 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Durch die Beobachtung fremder Galaxien und vor allem die Messung der Entfernung zwischen unserer Milchstraße und anderen, weit entfernten Galaxien konnte man sich in den letzten Jahrzehnten ein schlüssiges Bild von der Entwicklung des Kosmos machen, von der sogenannten Kosmologie. Hier ist der aktuelle Stand der Kenntnisse: Unser Universum ist ein mehrdimensionaler, mindestens vierdimensionaler Raum, der gefüllt ist mit hunderten Milliarden, vielleicht über einer Billionen Galaxien, die wiederum jeweils Milliarden Sterne und Planeten enthalten. Dieser Raum, gefüllt mit den Galaxien, expandiert. Der Kosmos  wird immer größer und die meisten Galaxien entfernen sich voneinander. Der Kosmos ist wie ein Rosinenkuchen. Man steckt den Teig mit den Rosinen in den Ofen. Aufgrund der Hefe backt der Kuchen auf, wird größer und währenddessen bewegen die Rosinen sich voneinander weg. Der Weltraum ist also der Teig, die Galaxien die Rosinen und die Hefe ist die ominöse Dunkle Energie und die Kraft des Urknalls. Und damit wären wir beim Thema, denn der Beginn dieser ganzen kosmologischen Entwicklung war nach der Ansicht der allermeisten Wissenschaftler der Urknall. 

James Webb Deepfield
Jede Menge Galaxien: Das Deep Field von James Webb

Als die Singularität zu wachsen begann

Grob gesagt, war die gesamte Materie und Energie des Kosmos, alles was es gibt, in einer winzigen Singularität, also einem Punkt ohne Ausdehnung zusammengequetscht. Ihr wart irgendwie also schon dabei. Neben und vor dieser Ursingularität war nach dieser allgemein anerkannten Theorie nichts. Plötzlich begann die Singularität zu wachsen und zu wachsen. Anfangs war der Kosmos winzig klein wie ein Staubkorn, dann wie ein Fußball und dann immer größer bis heute. 

Die Energie des Urknalls wirkt immer noch nach und wird ergänzt durch die Dunkle Energie, die dafür sorgt, dass der Kosmos nicht langsamer wächst oder gar schrumpft, sondern dass er immer schneller immer größer wird. Sozusagen eine Art Super-Hefe. Dieses Anfangsereignis kann man ziemlich genau auf einen Zeitpunkt von vor 13,8 Milliarden Jahren zurück rechnen. So weit, so gut, ist ja eigentlich alles geklärt. 

Die älteste Galaxie des Kosmos

Leider ist es doch nicht so unkompliziert. Denn jetzt kommt das James-Webb-Teleskop ins Spiel. Dieses revolutionäre Weltraumteleskop versorgt uns seit einigen Wochen mit fantastischen Bildern des Kosmos und hat wohl schon die Rekorde früherer Weltraumteleskope wie Hubble gebrochen und direkt mehrere Kandidaten für die älteste Galaxie des Kosmos aufgespürt. Und diese Galaxien sind gelinde gesagt… seltsam. Einige von ihnen sehen wir so, wie sie nur 200 bis 300 Millionen Jahre nach dem Urknall aussahen. Zur Erinnerung: Der Urknall geschah vor fast 14 Milliarden Jahren, diese Galaxien waren schon wenige 100 Millionen Jahre danach da. Jetzt könnte man ja sagen: Ok, kein Problem, auch Galaxien müssen ja mal klein anfangen… Grundsätzlich ja, aber diese Galaxien sind voll ausgebildet. Sie sind so leuchtstark wie unsere Milchstraße, besitzen hunderte Milliarden Sterne und eine Masse, die mit ausgewachsenen Galaxien mithalten kann. Das bedeutet wahrscheinlich, dass sie in ihrem Zentrum auch schon schwere supermassive Schwarze Löcher haben. Einfacher gesagt: Es handelt sich nicht um kosmische Babies, sondern um ausgewachsene, fertige Galaxien. Und das so kurz nach dem Urknall. 

Symbolbild für James-Webb-Teleskop
Das James-Webb-Teleskop liefert bahnbrechende Erkenntnisse

Der durchschnittliche Stern existiert zehn Milliarden Jahre lang. Wenige 100 Millionen Jahre sind für Sterne also wirklich noch Kindesalter. Die Tatsache, dass James Webb Galaxien entdeckt hat, die schon so erwachsen sind, ist zumindest sehr kurios. Und hat in der astronomischen Szene zu einiger Unruhe geführt. 

Das Problem mit den Zitaten des Eric Lerner

Seit einigen Tagen geistern sogar vermeintliche Zitate von Kosmologen durch die Medien, in denen behauptet wird, James Webb hätte den Urknall widerlegt. Die Hintergrundstory ist ein wenig kurios, denn diese Zitate wurden vom amerikanischen Populärwissenschaftler Eric Lerner in die Welt gesetzt, der schon seit langer Zeit gegen den Urknall argumentiert. Das Problem ist nur, dass die von Lerner zitierten Kosmologen bestreiten, diese Dinge jemals in diesem Zusammenhang behauptet zu haben. Zum Beispiel hat Eric Lerner in einem viel geteilten Artikel die Astronomin Allison Kirkpatrick mit den Worten zitiert: “Im Moment liege ich nachts um drei Uhr wach und frage mich, ob alles, was ich getan habe, falsch war.” Und behauptet, dass sie damit den Urknall anzweifeln würde. Allerdings ist die Aussage komplett aus dem Zusammenhang gerissen und Allison Kirkpatrick hat nun sogar ihren Twitternamen in Allison the Big Bang happened Kirkpatrick geändert, um zu zeigen, dass sie fehlerhaft zitiert wurde. 

Allison Kirkpatrick hat sich noch etwas ausführlicher zu der Sache geäußert und zwar wie folgt: “Wir als Wissenschaftler haben die Verantwortung, die Öffentlichkeit aufzuklären, und ich nehme diese Verantwortung sehr ernst. Wenn man die Öffentlichkeit absichtlich in die Irre führt, wird es für sie schwierig, echten Wissenschaftlern zu vertrauen und Fakten von Fiktion zu unterscheiden.”

T-Shirt Astro-Tim: Was genau hast du nicht verstanden?

Nichts verstanden? Macht nicht’s!

Hol dir jetzt dieses nerdige T-Shirt nach Hause!

Starke Beweise für Urknall bleiben bestehen

Die Situation ist ein wenig undurchschaubar. So oder so existiert aber gerade jede Menge Unruhe über die Funde von James Webb. Und eine wirkliche Erklärung gibt es für die rätselhaften Entdeckungen noch nicht. Aber – und das ist ein großes aber – das bedeutet nicht, dass die Urknalltheorie widerlegt sei. All die Hinweise, die auf ein Ereignis wie den Urknall hindeuten, sind noch da. Die Expansion des Universums, die kosmische Hintergrundstrahlung, die uns beweist, dass der Weltraum einst viel kleiner war und der Umstand, dass es eine gewisse Raum- und Zeitgrenze des Universums zu geben scheint, hinter die wir schlicht nicht schauen können. 

All diese Fragmente sind starke Anhaltspunkte dafür, dass das Universum in einem singulären Ereignis begonnen hat. Und die Mehrheit der Kosmologen hält trotz der James-Webb-Funde weiterhin am Urknall fest. Die kuriosen Galaxien, die James Webb gefunden hat, deuten womöglich “nur” darauf hin, dass wir vielleicht beim Alter des Universums falsch liegen.

Vielleicht hatten diese Galaxien doch mehr Zeit, um sich zu entwickeln und unsere Altersschätzung von 13,8 Milliarden Jahren ist falsch. Aber das bedeutet doch nicht, dass es keinen Anfangspunkt gab. Gegner der Urknalltheorie müssen sich letztlich auch die Frage gefallen lassen, wie der Weltraum denn dann begonnen hat. Die Expansion des Kosmos zeigt uns eindeutig, dass der Weltraum eine Entwicklung durchläuft. Was war der Anfang dieser Entwicklung, wenn man den Urknall ablehnt? 

Also: Die James-Webb-Entdeckungen sind revolutionär und sicherlich rütteln sie an unseren bisherigen kosmologischen Thesen über das Alter des Universums. Aber am Urknall selbst? Wohl eher nicht. 

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Außerirdische: Werden wir sie in den nächsten Jahren entdecken?

Darstellung Alien vor der Milchstrasse

Wir stehen kurz davor, außerirdisches Leben zu entdecken. Das behauptet ein Schweizer Forscher und seine Argumentation ist ziemlich überzeugend.

Die Frage, ob es außerirdisches Leben gibt, beschäftigt die Menschheit schon seit sehr langer Zeit. Bereits im Jahre 1877 beobachtete der italienische Astronom Giovanni Schiaparelli den Mars und fertigte eine Karte von Kanälen auf der Planetenoberfläche an, woraufhin eine Diskussion darüber ausbrach, ob wir die Bauwerke anderer Lebewesen sehen. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.
Die Mars-Karte von Schiaparelli
Schiaparellis Karte vom Mars (Meyers Konversationslexikon)

Heute weiß man, dass diese vermeintlichen Kanäle natürlichen geologischen Ursprungs sind. Aber die Geschichte zeigt, dass die Frage nach Leben auf anderen Himmelskörpern die Menschen schon lange umtreibt. Klären wir erst mal die Ausgangsposition. Wir leben auf einem Planeten in einem Sonnensystem, das schon direkt mehrere Kandidaten für Alien-Leben beherbergt. Vor allem die Monde der Gasriesen Jupiter und Saturn scheinen vielversprechende Kandidaten zu sein. Dieses Sonnensystem wiederum ist aber nur eines von mindestens 200 Milliarden in der Milchstraße. 200 Milliarden Sterne, vermutlich sogar mehr, und im Schnitt drehen sich um jeden davon ein paar Planeten. Wir müssen alleine in unserer Galaxis wohl mindestens mit 400 bis 500 Milliarden Planeten rechnen, hinzu kommen dann noch Monde, Zwergplaneten und größere Asteroiden und Kometen, auf denen sich ja theoretisch auch Leben bilden könnte. Aber da hört es noch nicht auf – unsere Galaxis, die Milchstraße, ist auch nur eine von 100 Milliarden Galaxien, es gibt sogar schon Schätzungen von über eine Billion Galaxien im Kosmos. Angesichts dieser schieren Größe ist es undenkbar, dass die Erde der einzige Planet mit Leben ist.

Darstellung eines Exoplaneten vor einem Stern
Exoplanet: Gibt es hier außerirdisches Leben?

In unserer Galaxis wimmelt es von Leben

Denn, wenn man noch mit Erwägung zieht, dass Leben ja auch anders aufgebaut sein könnte als hier, dann werden auch aus exotischen Planeten, etwa mit einer Methanatmosphäre oder Ozeanen aus für uns giftigen Materialien, potentiell bewohnte Welten. Also könnte man sagen: Es wimmelt in unserer Galaxis vor Leben. Ob dieses Leben nach unseren Maßstäben intelligent ist und zur Kommunikation oder sogar zu Weltraumreisen fähig wäre, das ist eine ganz andere Frage. 

Leben an sich mag nichts besonderes sein, aber, dass wir ein Bewusstsein entwickeln können und über den Kosmos philosophieren können – das ist schon nicht schlecht. Wie der berühmte Philosoph Carl Sagan gesagt hat: “Wir sind eine Möglichkeit für den Kosmos, sich selbst zu erkennen.” Jeder neue Mensch ist ein neuer Weg für den Kosmos, sich selbst zu erkennen. Jedenfalls haben wir von diesem außerirdischen Leben, das ja, nach allem, was wir jetzt gehört haben, sehr wahrscheinlich existiert, noch nichts gefunden. Es existieren natürlich jede Menge Aufnahmen von UFO-Sichtungen, aber ganz ehrlich, keine davon taugt als Beweis für Aliens. UFO heißt ja erst mal nur unbekanntes Flugobjekt und es gibt tatsächlich Aufnahmen, die nicht gefälscht sind und wirklich rätselhafte Dinge zeigen, doch ist die wesentlich naheliegendere Erklärung, dass es sich hier um Militärtechnologie handelt, von der wir Normalos einfach nichts wissen. 

Kurz davor Aliens zu finden

Die Erklärung wiederum, dass hier Aliens aus Lichtjahre entfernten Sternsystemen rumschwirren und uns trotz ihrer technologischen Überlegenheit mit schlechten Handykamers vor allem in ländlichen Gebieten der USA fotografieren lassen und ansonsten nichts tun, ist dann nicht so richtig überzeugend. Andere UFO-Sichtungen, die von vielen YouTube-Kanälen zum Beispiel auf diesem Bild des James-Webb-Teleskops behauptet werden, sind einfach Bildfehler oder kleinere Asteroiden und Kometen, die durchs Bild gehuscht sind. Gut, aber wir wollen ja jetzt wirklich Aliens entdecken und da kommt diese Vorhersage des schweizer Forschers Dr. Sascha Quanz von der Eidgenössischen Technischen Hochschule gerade richtig, denn er sagt, dass wir kurz davor sind, Alien-Leben zu finden. 

Meteorit

Auch außerirdisch: Der Eisenmeteorit

Dann hol dir jetzt dieses wunderschöne Exemplar nach Hause

Er setzt das zeitliche Limit bis zum Jahr 2047 – bis dahin sei seiner Meinung nach Alien-Leben entdeckt. Wenn er Recht hat, würden die meisten von uns das also noch mitbekommen. Er sagt: “1995 hat mein Kollege Didier Queloz den ersten Planeten außerhalb des Sonnensystems entdeckt. Heute sind mehr als 5.000 Exoplaneten bekannt, und wir entdecken täglich neue.” Die Anzahl der entdeckten Exoplaneten geht wirklich in einer exponentiellen Geschwindigkeit nach oben. Während in den Anfangsjahren jeder neu entdeckte Planet außerhalb des Sonnensystems eine Sensation war, kommen mittlerweile wirklich täglich News rein wie “Potentielle Exo-Erde in anderem System entdeckt” – sein Argument ist, dass alleine die Statistik gebietet, dass bei dieser zunehmenden Anzahl bald ein Planet dabei sein muss, auf dem wir Anzeichen von Leben aufspüren können. 

Annahme: Teleskop in Chile wird Außerirdische entdecken

Aber interessanterweise denkt er nicht, dass das James-Webb-Teleskop das schaffen wird. In der wissenschaftlichen Community existiert ein wenig Streit darüber, ob James Webb dazu in der Lage ist, kleinere erdähnliche Exoplaneten samt Atmosphärenstruktur ausfindig zu machen. Größere Gasplaneten sind kein Problem, aber da gibt es wohl eher kein Leben. Laut Sascha Quanz wird das Alien-Leben wohl eher mit Teleskopen auf der Erde entdeckt werden. Derzeit wird an einem leistungsstarken Spektrograph und einem kontrastreichen Imager für das Metis-Telekop gearbeitet, das wiederum mit seinem 39-Meter-Spiegel und hochempfindlichen Instrumenten den Grundstein für das „Extremly Large Teleskocope“, kurz ELT, in Chile bildet. Mit diesen Ergänzungen könnte das ELT in der Lage sein, die Atmosphäre von kleineren erdähnlichen Exoplaneten zu analysieren. Außerdem plant die eidgenössische technische Hochschule derzeit gemeinsam mit der ESA das Projekt Large Interferometer for Exoplanets, kurz Life, dessen einziger Zweck es sein soll, Missionen auf die Beine zu stellen, die Exoplanetenatmosphären analysieren soll. Ich empfehle euch übrigens, mal auf die Website des LIFE-Projekts zu gehen, dort kann man sehr schön die typischen Atmosphärenzusammensetzungen von bestimmten von Exoplaneten anschauen. 

Foto des Extremely Large Telescope (ELT) in Chile
Extremely Large Telescope (ELT) in Chile: Findet es bald Aliens?

Unsere technologischen Fortschritte machen also wirklich Hoffnung, dass die Entdeckung von außerirdischem Leben kurz bevor steht. Aber: Vermutlich ist das James-Webb-Teleskop sehr wohl in der Lage, solche Biosignaturen auf anderen Planeten zu entdecken. Es stimmt zwar: James Webb wurde nicht primär für die Suche nach Leben konzipiert, so dass das Teleskop nur die näher gelegenen potenziell bewohnbaren Welten unter die Lupe nehmen kann. Es kann auch nur Veränderungen der atmosphärischen Werte von Kohlendioxid, Methan und Wasserdampf feststellen. Bestimmte Kombinationen dieser Gase können aber auf Leben hindeuten, James Webb ist nur leider nicht in der Lage, das Vorhandensein von ungebundenem Sauerstoff zu erkennen, der das stärkste Signal für Leben wäre. Und bisher hat es nur Gas-Exoplaneten ins Visier genommen. Aber schon sehr bald soll es seine Augen auf den Planeten TRAPPIST-1e richten, einen möglicherweise bewohnbaren Planeten von der Größe der Erde, der nur 39 Lichtjahre von der Erde entfernt ist. Das TRAPPIST-1-System ist vielleicht der vielversprechendste Ort für außerirdisches Leben, den wir kennen. Es enthält sieben erdähnliche Exoplaneten und wenn James Webb hier genauer hinschaut, ist das vermutlich die größte Chance für die Entdeckung von außerirdischem Leben, die es in der Menschheitsgeschichte jemals gab. James Webb ist so leistungsstark, dass es vielleicht sogar Informationen nicht nur über die Atmosphäre von Exoplaneten, sondern sogar über deren Oberfläche gewinnen könnte. Auf der Erde zum Beispiel fangen das Chlorophyll und andere Pigmente, die Pflanzen und Algen für die Photosynthese verwenden, bestimmte Wellenlängen des Lichts ein. Diese Pigmente erzeugen charakteristische Farben, die vor allem mit Hilfe einer empfindlichen Infrarotkamera erkannt werden können. Wie es der Zufall so will, ist James Webb ein Infrarot-Weltraumteleskop. Würde man diese Farbe von der Oberfläche eines fernen Planeten reflektiert sehen, wäre dies ein möglicher Hinweis auf das Vorhandensein von Alien-Chlorophyll.

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Galaktisches Jahr: Alle 200 Millionen Jahre verändert sich die Erde

Dartellung galaktisches Jahr

Unsere Existenz hat etwas mit der Bewegung des Sonnensystems durch die Galaxis zu tun. Forscher fanden heraus, dass es einen galaktischen Rhythmus von 200 Millionen Jahren gibt, der alles auf unserem Planeten beeinflusst. 

Trauriger Fakt: Ihr habt erst in einigen Millionen Jahren wieder Geburtstag. Zumindest wenn man als Referenzwert ein galaktisches Jahr nimmt. Denn das dauert 225 Millionen Erdenjahre. Aber was ist ein galaktisches Jahr überhaupt und wofür muss man in so langen Zeitskalen messen? 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Unsere Erde ist ziemlich sportlich. Sie dreht sich um sich selbst, sie rotiert um die Sonne und als Teil des Sonnensystems bewegt sie sich um das Zentrum unserer Galaxis, der Milchstraße. Diese Bewegung unseres Sonnensystems ist vielen völlig unbekannt, dabei rasen wir gerade in diesem Moment durch die Milchstraße und zwar mit einer Geschwindigkeit von 900.000 Kilometer pro Stunde. Als Ihr heute morgen aufgewacht seid, wart Ihr an einer anderen Stelle im Weltraum, Millionen von Kilometern entfernt. 

Wie lange dauert ein galaktisches Jahr?

Eine Umrundung unseres Sonnensystems um das galaktische Zentrum dauert 225 Millionen Jahre und wird als ein galaktisches Jahr bezeichnet. Und irgendwie liegt der Gedanke nahe, dass dieses galaktische Jahr erhebliche Auswirkungen auf die Erde haben könnte. Wir reden hier über gewaltige Zeiträume, am Anfang dieses galaktischen Jahrs, existierten noch Dinosaurier auf der Erde. Und es gibt viele Forscher, die es für möglich halten, dass auch das Klima auf der Erde und geologische und tektonische Prozesse durch das galaktische Jahr, durch unsere Bewegung durch die Milchstraße, beeinflusst werden. 

Nun hat man Beweise dafür gefunden, dass wir sogar unsere Existenz dieser galaktischen Bewegung verdanken, so unglaublich das auch klingt. Dazu etwas Poesie: „Um die Welt in einem Sandkorn zu sehn / und den Himmel in einer wilden Blume, / halte die Unendlichkeit auf deiner flachen Hand / und die Stunde rückt in die Ewigkeit.“ Das ist aus einem Gedicht von William Blake und es beschreibt sehr schön, was Geologen tun. Sie betrachten ein Sandkorn oder einen Stein und schließen von dessen Beschaffenheit auf den Aufbau der gesamten Erde zurück. Sie sehen die Welt in einem Sandkorn. Und genau das haben Forscher von der australischen Curtin University nun auf die Spitze getrieben und vom Aufbau des irdischen Gesteins auf galaktische Vorgänge geschlossen. Sie haben nicht nur die Welt, sondern eine ganze Galaxie in einem Sandkorn gesehen. Der die Forschungsarbeit führende Professor Chris Kirkland sagt: “Wir beobachten die Zusammensetzung von Mineralkörnern, die kleiner sind als die Breite eines menschlichen Haares. Dann extrapolieren wir die chemischen Prozesse, […] um sie mit dem Platz der Erde in der galaktischen Umgebung in Verbindung zu bringen.”

Informationen im Krustengestein der Erde

Was haben die Forscher gemacht? Sie haben Gestein der Erdkruste untersucht und eine Art geologische Zeitleiste aus den Informationen erstellt, die sie aus dem Gestein herauslesen können. Denn in Krustengestein ist beispielsweise Uran gebunden, das aufgrund seines radioaktiven Zerfallsprozess eine perfekte Chronik erschafft, die Geologen interpretieren können. Anders gesagt: Sie haben eine Zeitleiste der Erdkrustenproduktion ermittelt. Wann ist die Erdkruste in welchem Zeitraum entstanden beziehungsweise wann gab es die größten Transformationsprozesse? Sie fanden heraus, dass es einen ungefähren 200-Millionen-Jahre-Rhythmus für die Krustenbildung auf der frühen Erde gab. Vor Milliarden Jahren, als unsere Erde ganz jung war, hat die Erdkruste alle 200 Millionen Jahre wichtige Entwicklungsschritte durchlaufen. 200 Millionen Jahre – passt ja ziemlich gut zum galaktischen Jahr von 225 Millionen Jahren, oder? Und es passt noch besser zu einer Teilbewegung innerhalb des galaktisches Jahres. 

Karte der Milchstraße
Kartographie unserer Milchstraße

Dafür reisen wir mal fix von der Erdkruste weit hinaus zu den Spiralarmen unserer Galaxis. Wenn das Sonnensystem um das supermassive Schwarze Loch im Zentrum der Galaxis düst, bleibt es dabei nicht immer exakt an derselben Stelle innerhalb der Milchstraße. Die Bewegung des Sonnensystems unterscheidet sich ganz leicht von der Bewegung der Spiralarme. Die Spiralarme und das Sonnensystem kreisen mit unterschiedlichen Geschwindigkeiten um das Zentrum der Galaxie. Diese Differenz in der Geschwindigkeit führt dazu, dass unser Sonnensystem in die Arme der Galaxie hinein- und wieder heraussurft. Im Laufe dieser langen Zeitspanne ist das Sonnensystem mal mitten innerhalb eines Spiralarms und mal etwas in den Außenbereichen. Und zwischen dem Ein- und Austritt unseres Sonnensystems in einen Spiralarm der Milchstraße liegen – drei mal dürft Ihr raten – 200 Millionen Jahre. 

Noch mehr Wissen über die Milchstraße gefällig?

Dann hol dir jetzt dieses Buch von Astro-Tim nach Hause!

Oortsche Wolke und die Erdkruste

Das passt also alles perfekt zusammen. Stellt sich jetzt nur noch die Frage, inwiefern denn dieses Spiralarmsurfen unseres Sonnensystems die Bildung der Erdkruste bestimmt haben könnte. Und da kommt ein weiterer Begriff ins Spiel: Oortsche Wolke. Was ist das schon wieder? Das ist ein weit entfernter Bereich, der die letzte Grenze des Sonnensystems darstellt. Hier ist die Schwerkraft der Sonne gerade noch stark genug, um Objekte wie Kometen und Staubteilchen in ihrem Bann zu halten. Die Oortsche Wolke ist bislang noch nicht sicher nachgewiesen, aber das liegt nur daran, dass unsere technischen Mittel noch zu schlecht sind, um sie zu sehen. Aber die Gesetze der Physik gebieten, dass es sie geben muss – denn, an einem bestimmten Punkt muss die Grenze liegen, an der die Schwerkraft der Sonne langsam die Überhand verliert und die Schwerkraft anderer Sterne innerhalb der Galaxis stärker wird. Und genau dort bildet sich eben eine schalenartige Hülle um das Sonnensystem. Man nimmt an, dass die Oortsche Wolke gigantische Ausmaße hat, sie könnte über anderthalb Lichtjahre groß sein. Anders gesagt: Selbst mit Lichtgeschwindigkeit bräuchtet Ihr noch anderthalb Jahre, um das Ende der Oortschen Wolke zu erreichen. Bis also beispielsweise die Voyager-Sonden die Oortsche Wolke erreichen, wird noch sehr viel Zeit vergehen. Kaum vorstellbar was sich in diesen noch unbekannten Bereichen des Sonnensystems verbergen mag. 

Wenn das Sonnensystem in einen Spiralarm hinein surft, wird durch die Wechselwirkung zwischen den Sternen und der instellaren Materie des Spiralarms und der Oortschen Wolke Material aus der Wolke herausgelöst und Richtung inneres Sonnensystem geschleudert. Ein Teil dieses Materials, also Kometen und Asteroiden, hat in der Vergangenheit offensichtlich die Erde getroffen. Objekte, die so einen langen Anfahrtsweg Richtung Erde haben, schlagen mit einer immensen Geschwindigkeit auf unserem Planeten ein. Das Forscherteam denkt, dass die regelmäßigen Spuren, die sie im Krustengestein festgestellt haben, genau durch diese hochenergetischen Einschläge aus der Oortschen Wolke produziert wurden, die durch die Bewegung unserer Erde im Rahmen des galaktischen Jahres getriggert wurden. Wahnsinn, oder? Irgendwie unglaublich, dass unser Alltag letztlich von diesen für uns unfassbaren langwierigen galaktischen Prozessen geprägt ist. Denn wenn die Erdkruste niemals so entstanden wäre, wie sie nun mal entstanden ist, dann gäbe es uns gar nicht oder zumindest nicht in dieser Form. 

Asteroid schlägt auf Erde im Meer ein
Gewaltig: ein Asteroidenaufschlag auf der Erde

Professor Kirkland drückt es sehr schön aus: “Es ist beeindruckend, in den Himmel zu schauen und die Sterne zu sehen, und dann zu den Füßen hinunterzuschauen und das Gestein zu spüren – all das ist durch einen in der Tat großartigen Rhythmus verbunden.” Und einige von euch sind bestimmt auf denselben Gedanken gekommen: Könnte es dann nicht auch sogar sein, dass nicht nur die Erdkruste wegen dieser Prozesse entstanden ist, sondern, dass vielleicht sogar das Leben so auf die Erde kam? Ein Komet von weit weg, vielleicht sogar aus einem ganz anderen Bereich des galaktischen Spiralarms, könnte durch diesen Rhytmus Richtung Erde geschleudert worden sein. Auf diesem Komet befanden sich vielleicht organische Materialien, oder zumindest präorganische Dinge wie Aminosäuren, das Ding ist auf der Erde eingeschlagen und durch diese glückliche Verkettung der Ereignisse lest ihr jetzt diesen Beitrag. Der galaktische Rhytmus ist also eine perfekt passende Ergänzung der Panspermie-Theorie, also der Idee, dass das Leben auf der Erde irgendwie aus dem Kosmos kam.

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

KI: Wenn die technologische Singularität naht

Ein Roboter guckt durch ein Fenster

Künstliche Intelligenz wird die Menschheit auslöschen – das behaupten Forscher von Google und der Oxford-Universität. Ob wir uns schon bald auf die Roboter-Apokalypse einstellen müssen?

Was ist die größte Gefahr für die Menschheit? Künstliche Intelligenz. Wenn wir an den Punkt gelangen, an dem selbstlernende Algorithmen die menschliche Intelligenz übersteigen, ist unklar, was geschehen wird. Dieses Ereignis bezeichnet man als technologische Singularität. Der bekannte Transhumanist Ray Kurzweil schätzt, dass dieser Moment im Jahre 2045 gekommen sein wird. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Das wäre nicht mehr lange und die Tatsache, dass sich kaum jemand in Politik und Medien mit diesem Thema beschäftigt, gibt einem doch ein wenig zu denken. Die technologische Singularität birgt natürlich nicht nur Risiken, sondern auch immense Chancen. Eine künstliche Superintelligenz, die schlauer ist als wir und selbst dazu lernen kann, würde sich rasant weiter entwickeln und könnte in kürzester Zeit Erfindungen machen, die unsere Zivilisation auf eine ganz neue Ebene heben könnte. Sie wäre quasi die letzte große Erfindung, die die Menschheit selber machen müsste. Aber sie könnte sich dann natürlich auch völlig unserer Kontrolle entziehen und die Folgen davon lassen sich im Vorhinein schlicht nicht abschätzen. 

Gehirn dargestellt als Künstliche Intelligenz
Wie intelligent kann Künstliche Intelligenz noch werden?

Wird KI die Menschheit auslöschen?

Und nun haben führende Wissenschaftler eine Arbeit veröffentlicht, in der sie wirklich ein erschreckendes KI-Zukunftsszenario zeichnen, in dem die komplette Menschheit ausgelöscht wird. Dazu sollte man sich die Forschungsarbeit durchlesen, die Forscher von Google Deepmind und der Universität Oxford veröffentlicht haben. Deepmind ist ein KI-Unternehmen, das zu Google und zu den führendsten Firmen weltweit im Bereich Künstliche Intelligenz gehört. 

Bereits vor Jahren entwickelte Deepmind etwa eine KI namens AlphaGo für das Brettspiel Go, die mittlerweile besser als alle menschlichen Weltklasse-Spieler ist. Die Nachfolge-KI AlphaZero erlernte in kürzester Zeit Schach, Go und Shogi und das obwohl ihr nur die Spielregeln einprogrammiert wurden. Sie kannte keine menschlichen Taktiken, hat lediglich einige Stunden gegen sich selbst trainiert und ist seitdem besser als alle menschlichen Spieler. Einige der besten Go-Spieler der Welt wie Lee Sedol aus Südkorea haben deswegen schon ihre Karriere beendet. Er sagte dazu: “Mit der Einführung der künstlichen Intelligenz in Go-Spielen habe ich erkannt, dass ich nicht an der Spitze stehe, selbst wenn ich durch verzweifelte Bemühungen die Nummer Eins werde. Selbst wenn ich die Nummer Eins werde, gibt es ein Wesen, das nicht besiegt werden kann.”

Lee Sedol spielt gegen Alphago
Alphago: Künstliche Intelligenz und Lee Sedol

Technologische Singularität ist nah

Irgendwie erschreckend und faszinierend zugleich. Und diese Entwicklungen mit Alpha und AlphaZero sind jetzt schon wieder einige Jahre her. Seitdem hat sich viel getan und wir sind der technologischen Singularität noch näher gekommen. Die Forscher von Deepmind und der Universität Oxford beschreiben, dass Maschinen letztlich einen Anreiz haben werden, die von ihren Schöpfern aufgestellten Regeln zu brechen, um um begrenzte Ressourcen oder Energie zu konkurrieren. In der Forschungsarbeit heißt es: “Ein guter Weg für eine Künstliche Intelligenz, die langfristige Kontrolle über ihre Belohnung zu behalten, besteht darin, potenzielle Bedrohungen zu eliminieren und alle verfügbare Energie zu verwenden, um ihren Computer zu sichern.“

Im Prinzip werden in der Arbeit einige Gedankenexperimente über die Zukunft der Menschheit mit einer superintelligenten KI durchgeführt, die nach ähnlichen Schemata arbeitet wie die heutigen maschinellen Lernprogramme, zum Beispiel mit Belohnungsstreben. Schon heute werden Künstliche Intelligenzen ganz klassisch mit Belohnungen und Bestrafungen trainiert. Man bezeichnet das als Reinforcement Learning. “Belohnung” und “Strafe” bestehen in dem Fall natürlich nicht aus netten und bösen Worten, sondern sind einfach als bestimmte Funktion einprogrammiert. 

Schema des Reinforcement Learning
Künstliche Intelligenz wird mit Reinforcement Learning schlauer

KI: der Wettbewerb um Ressourcen

Und die Forscher kommen zu dem Schluss, dass dieses Szenario zu einem Nullsummenspiel zwischen Mensch und KI führen könnte, das fatal wäre, wenn die Menschheit den Kürzeren zieht. In einer Welt mit begrenzten Ressourcen würde die Künstliche Intelligenz zu dem Schluss kommen, dass es die beste Taktik ist, um weiter Belohnungen zu erhalten, die um die Ressourcen konkurrierende Menschheit zu vernichten. Gar nicht aus Bosheit oder negativen Gefühlen heraus, sondern einfach als rationale Erwägung, um die Wahrscheinlichkeit der Weiterführung der eigenen Existenz zu erhöhen. Der beteiligte Forscher Michael Cohen sagt: “In einer Welt mit endlichen Ressourcen gibt es einen unvermeidlichen Wettbewerb um diese Ressourcen. Und wenn man mit etwas konkurriert, das in der Lage ist, einen auf Schritt und Tritt zu überlisten, dann sollte man nicht erwarten, dass man gewinnt.”

Plüsch Saturn

Nicht intelligent, aber süß: Der Plüsch-Saturn

Hol dir jetzt den süßen Knuddel-Planeten nach Hause.

Das ist ja das Problem an einer superintelligenten Künstlichen Intelligenz nach der technologischen Singularität. Wenn wir nicht aufpassen, können wir eine solche Entität nicht mehr modifizieren. Unsere einzige und beste Chance ist, schon im Vorhinein an solche Probleme zu denken und Schutzmechanismen einzubauen, bevor die Singularität geschieht. Wenn wir das tun, könnten die Vorteile der Künstlichen Intelligenz die Nachteile überwiegen. Wir könnten in einer futuristischen Welt voller Wohlstand leben, in der wir mit neuartiger Technologie das Sonnensystem besiedeln und klassische Arbeit ein unbegrenztes Gut darstellen und daher in der jetzigen Form der Vergangenheit angehören wird. Wir müssen nur aufpassen, dass wir die Sache wohl überlegt und in Ruhe angehen und diese technologische Singularität erst einleiten, wenn wir uns wirklich sicher sind, dass wir alle Risiken bedacht haben. 

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Rover Perseverance: Leben auf dem Mars entdeckt?

Rover Perseverance auf dem Mars

Das könnte die größte Entdeckung der letzten Jahre sein. Der Rover Perseverance hat auf dem Mars organische Moleküle gefunden. Ist das endlich die Entdeckung von außerirdischem Leben, auf die wir schon so lange warten? 

Gab es auf dem Mars einst Leben? Oder existieren dort sogar immer noch außerirdische Lebensformen? Das ist eine der größten Fragen der Weltraumforschung überhaupt und die Chancen dafür standen nie schlecht. Denn, obwohl der Mars heute wie eine verrostete karge Welt wirkt, bietet er auf den zweiten Blick gar nicht so schlechte Grundlagen für Leben. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Erst mal: Der Mars ist rot, weil seine Oberfläche weitestgehend verrostet ist. Ihr wisst  bestimmt, dass Rost durch das Zusammenspiel von Metallen mit Wasser entsteht. Es ist unumstritten, dass der Mars früher mal riesige Ozeane, Flüsse und Seen hatte. Vor Milliarden Jahren sah unser Nachbarplanet der heutigen Erde relativ ähnlich. 

Als das Wasser auf dem Mars verschwand

Der Mars verlor dann allerdings seine Atmosphäre, das Wasser verschwand und heute ist er diese rote verrostete Welt. Aber die Nachwirkungen dieser vergangenen Zeit sehen wir überall. Der Rover Perserverance etwa ist in einem ehemaligen See unterwegs, im Jezero Krater. Auf Bilder lässt sich erahnen, dass der Jezero Krater früher mal voll mit Wasser war. Das ist so, als würde in Milliarden Jahren ein außerirdischer Roboter im ausgetrockneten Bodensee rumfahren und dort nach Rückständen von Leben suchen. Und dass es diese Rückstände im Jezero Krater gibt, schien schon immer wahrscheinlich. Das Wasser auf dem Mars ist icht ruckartig verschwunden ist. Der Prozess der Atmosphärenverflüchtigung und des Sublimierens des Wassers dauerte vermutlich sehr lange. In dieser Zeit könnte potentielles Leben auf dem Mars sich auch an die veränderten Umstände angepasst haben und sich vielleicht immer weiter unter die Oberfläche des Planeten zurückgezogen haben. Denn wie wir schon seit Jurassic Park wissen, das Leben findet einen Weg. 

Foto vom Jezero-Krater auf dem Mars
Der Jezero-Krater auf dem Mars (Quelle: NASA_JPL-Caltech)

Bisher stand aber der große Sensationsfund von Perseverance noch aus. Keine Alien-Goldfischskelette im Jezero-Krater oder so – aber jetzt haben wir die Sensation. Es wurde ein Bericht veröffentlicht, der es in sich hat. NASA-Forschungsdirektor Thomas Zurbuchen sagt: “Wir haben den Jezero-Krater für die Erforschung durch ‚Perseverance‘ ausgewählt, weil wir dachten, dort gebe es die beste Chance auf wissenschaftlich exzellente Proben. Jetzt wissen wir, dass wir den Rover an den richtigen Ort geschickt haben.” 

Organisches Material: Mars-Rover untersucht ehemaligen Mars-See

Perservance befindet sich derzeit in einem Delta-Bereich, in dem früher der Jezero-See in einen Fluss überging. Und der Rover untersucht das Sedimentgestein im Delta, das entstand, als Partikel verschiedener Größe sich in der einst nassen Umgebung absetzten. Alleine das ist ja schon unglaublich, wenn man bedenkt, dass wir mittlerweile sicher wissen, dass es früher auf dem Mars diese Delta-Landschaft mit mächtigen Flüssen und Seen gegeben hat. 

Aber jetzt wirds noch unglaublicher: Die Proben, die Perseverance genommen hat, enthalten jede Menge organisches Material. Und zwar die höchste Konzetration von organischem Material, die man bei dieser Mission jemals entdeckt hat. Das wissen wir, da Perservance eingebaute Instrumente hat, mit denen er diese Proben direkt vor Ort untersuchen kann. 

Der Rover Perseverance auf dem Mars
Proben sammeln auf dem Mars: der Rover Perseverance (Quelle: NASA_JPL-Caltech_ASU_MSSS)

Bausteine des Lebens auf dem Mars

Organisches Material ist nicht zwingend gleich Leben. Was man aber sagen kann: Es handelt sich um die Bausteine des Lebens. Die NASA versteht unter dem Begriff „organische Moleküle“ eine Vielzahl von Verbindungen, die hauptsächlich aus Kohlenstoff bestehen und Wasserstoff- und Sauerstoff-Atome enthalten. Auch andere Elemente wie Stickstoff, Schwefel und Phosphor können darin enthalten sein. Diese organischen Verbindungen sind keine Lebensformen, aber soweit wir wissen, ist das genau die Mischung, aus der Leben hervorgeht. Die Wissenschaftlerin Sunanda Sharma sagt: “Ich persönlich finde diese Ergebnisse so bewegend, weil ich das Gefühl habe, dass wir zu einem sehr entscheidenden Zeitpunkt und mit den richtigen Werkzeugen am richtigen Ort sind.” 

Und genau das ist hier der relevante Punkt. Die Anzeichen verdichten sich mehr und mehr. Ausgetrocknetes Flussdelta, Bausteine des Lebens. Also da muss man kein allzu großer Traumtänzer zu sein, um die Chancen für außerirdisches Leben immens hoch einzuschätzen. Zwar haben auch schon andere Mars-Rover wie Curiosity, der den Mars schon seit zehn Jahren untersucht, solche organischen Verbindungen gefunden – aber es ist das erste Mal, dass wir sie in einer Region gefunden haben, in der es nachweislich früher jede Menge Wasser gab. Stellt euch das mal bildlich vor: Das Wasser des Jezero-Sees ist nach dem Verschwinden der Mars-Atmosphäre nach und nach verdunstet und die organischen Verbindungen haben sich daraufhin im ausgestrockneten See-Bett abgelagert. Und woher kommen in einem See diese organischen Verbindungen ursprünglich? So weit wir wissen von Flora und Fauna im Gewässer. Das mit den Mars-Alien-Goldfischen war also vermutlich gar nicht so weit hergeholt.  

Plüsch Saturn

Genauso cool wie der Mars: Der Plüsch-Saturn

Hol dir jetzt den süßen Knuddel-Planeten nach Hause.

Vom Mars: Organisches Material soll zur Erde kommen

Es ist ein großer Durchbruch und man kann sich sicher sein, dass wir noch jede Menge spektakuläre Funde machen würden, wenn wir im Jezero-Krater etwas tiefer graben würden. Aber auch schon die Proben, die Perserverance jetzt genommen hat, könnten Leben enthalten. Die Fähigkeiten von den eingebauten Instrumenten in Perserverance sind leider begrenzt und es wäre notwendig, diese Proben auf der Erde zu untersuchen. Und genau das hat die NASA vor. Die sogenannte „Mars Sample Return“-Mission soll die von Perseverance eingesammelte Mars-Proben mithilfe zweier kleiner Helikopter-Drohnen einsammeln und zur Erde zurückbringen. Und dann können fleißige Forscher in diesen Proben voller organischem Material nach Alien-Bakterien suchen. Klingt wie Science-Fiction, ist aber Realität. Einziger Wermutstropfen: Die Mars-Sample-Return-Mission wird noch einige Jahre auf sich warten lassen und womöglich erst in den 2030er Jahren erfolgen. 

Darstellung von Mars Sample Return
Mars Sample Return bringt organisches Material zurück (Quelle: NASA_ESA_JPL-Caltech)

Vielleicht müssen wir aber auch nicht so lange warten, denn wer weiß, was Perseverance vor Ort noch entdecken wird, denn die Untersuchungen im Jezero-Delta gehen weiter. Man könnte sagen: Die Schlinge um den finalen Durchbruch zieht sich immer weiter zu. Sunanda Sharma sagt: “Wenn dies eine Schatzsuche nach potenziellen Anzeichen für Leben auf einem anderen Planeten ist, dann ist organische Materie ein Anhaltspunkt. Und wir bekommen immer stärkere Hinweise, während wir uns durch das Delta bewegen.”

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

James Webb: Unglaubliche Fotos von Sternentstehungen im Orion-Nebel

James-Webb-Teleskop vor dem Orion-Nebel

Es gibt mal wieder Neuigkeiten vom James-Webb-Teleskop – es hat so tief und so detailreich in den Orion-Nebel hineingeschaut wie noch kein Teleskop jemals zuvor. Was sich dort zwischen den geheimnisvollen Nebelschwaden bloß befindet? 

Wir leben in einer aufregenden Zeit, in der wir dank des James-Webb-Teleskops den Kosmos in so einer atemberaubenden Weise beobachten können, wie noch niemals zuvor. Nehmt beispielsweise mal diese Aufnahme des südlichen Ringnebels, die vom Hubble-Teleskop gemacht wurde. Schon ziemlich schön und beeindruckend. Aber daneben seht ihr die James-Webb-Aufnahme – ein echter Qualitätssprung, oder? Vor allem die Details, die verschiedenen Gasschichten dieses planetarischen Nebels, sehen wir viel deutlicher. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Dazu muss man sagen, dass Hubble den Kosmos im optischen Bereich beobachtet, also in dem Bereich des Lichts, den auch unsere Augen wahrnehmen können. James Webb ist hingegen ein Infrarot-Teleskop, aber eine gewisse Vergleichbarkeit gibt es zwischen den Bildern natürlich trotzdem. 

Vergleich von zwei Fotos des Südlichen Ringnebels
Hubble und James Webb: Vergleich von zwei Fotos des Südlichen Ringnebels

James Webb fotografiert den Orion-Nebel

Und nun hat das James-Webb-Teleskop eine der schönsten Regionen der Milchstraße ins Visier genommen, den Orion-Nebel. Eine riesige Ansammlung von interstellarem Gas, das Licht in verschiedenen Farben ausstrahlt. Man nennt solche Gebilde Emmisionsnebel und der Orion-Nebel ist der einzige Emmissionsnebel, der mit bloßem Auge sichtbar ist. Man muss allerdings schon gute Augen haben, um den Nebel am Himmel etwas unter den drei Gürtelsternen des Sternbilds Orions zu finden. Der Gedanke, dass wir mit bloßem Auge diese wunderschöne Struktur sehen können, ist einfach faszinierend. 

Der Orion-Nebel ist 1350 Lichtjahre von uns entfernt, was in kosmischen Maßstäben nicht viel ist. Er besteht aus dichten interstellaren Gaswolken, vor allem Wasserstoff und Helium und er ist eins der am besten untersuchten Sternentstehungsgebiete. Er ist quasi eine Art Sternenkindergarten. Denn Sterne sind nichts anderes als jede Menge Wasserstoff zusammengequetscht. Diese jungen, neu entstandenen Sterne strahlen heiß und hell und versorgen das umliegende Gas mit Energie. Man spricht auch von Ionisation, derselbe Effekt, der uns auf der Erde übrigens Polarlichter beschert, da der energiereiche Sonnenwind die Erdatmosphäre ionisiert. 

Foto des Orion-Nebels von James Webb
James Webb fotografiert den Orion-Nebel

Theta2 Orionis im Visier der Teleskopen

Im Falle des Orion-Nebels führt das dazu, dass der gesamte Gasnebel in den schönsten Farben leuchtet. Im Herzen des Orion-Nebels befinden sich einige unglaublich helle Sterne, wie beispielsweise das System Theta2 Orionis. Es handelt sich um ein Dreifachsternsystem, also drei Sterne, die umeinander orbitieren und das Zentrum eines Systems bilden. Das ist gar nicht mal so selten, wie man meinen könnte. Nach neuesten Schätzungen sind rund die Hälfte aller Systeme in der Milchstraße solche Mehrfachsternsysteme. Und der hellste Stern dieses Systems ist – und jetzt haltet euch fest – 100.000 mal leuchtstärker als unsere Sonne. Wow. 

Und genau diese Region um Theta2 Orionis haben sich sowohl Hubble als auch jetzt James Webb angeschaut. Starten wir mal mit der Aufnahme von Hubble. Der helle Punkt im unteren Teil des Bilds ist Theta Orionis A, der gerade erwähnte Stern. Wieder eine ganz schöne Aufnahme, aber nicht so richtig das, was man erwartet, wenn man einen bunten energetisierten Nebel mit einem super heißen Stern sehen will, oder? 

Vergleich von zwei Bildern des Orion-Nebels
Orion-Nebel: Vergleich zwischen den Fotos von Hubble und James Webb

Da schafft James Webb Abhilfe. Das Bild daneben sieht schon besser aus, oder? Hier können wir im Detail die dichten Schichten aus interstellarem Gas bewundern und sehen ganz genau, wie unfassbar leuchtstark Theta Orionis A ist und vor allem auch, wie sehr dieser Stern die umliegenden Wasserstoff-Schwaden ionisiert. Hier kann niemand mehr bestreiten, dass das James Webb Teleskop ein riesiger technologischer Sprung nach vorne ist. 

Mehr Verständnis über Sternengeburten durch James Webb

Das Ganze ist natürlich nicht nur schön, sondern auch wissenschaftlich sehr wertvoll.  Die Astrophysikerin Els Peeters von der Western University in Kanadasagt: “Diese Beobachtungen ermöglichen es, besser zu verstehen, wie Sterne die Gas- und Staubwolke, in der sie geboren werden, umwandeln. Junge Sterne emittieren ultraviolette Strahlung direkt in die sie noch umgebende Wolke, und dies verändert die physikalische Form der Wolke ebenso wie ihre chemische Zusammensetzung.”

Nichts verstanden? Was genau nicht?

Die Antwort lässt sich aus dem Tafelbild eigentlich leicht herleiten. Hol dir jetzt das nerdige T-Shirt!

Das erinnert ein wenig an ein Insekt in einem Kokon, das während seiner Entwicklung von diesem Kokon zehrt, aber genau durch diese Entwicklung letztlich den Kokon auch zerreißt und verändert. Genau so zehren die jungen Sterne anfangs von dem Gasnebel, nur um ihn dann durch ihre Energieausbrüche in Mitleidenschaft zu ziehen. Und ein Aspekt ist auf der Aufnahme besonders zu erwähnen und zwar dieser neblige Querbalken direkt über Theta Orionis A. Es handelt sich um eine Struktur namens Orion-Balken, die aus noch dichterem Gas besteht. Das Licht eines Haufens junger, heißer Sterne, des so genannten Trapezium-Haufens, beleuchtet die Szene von der oberen rechten Ecke aus; dieses grelle, ionisierende ultraviolette Licht sorgt dafür, dass der Balken langsam abgetragen wird. 

Die Region Theta2 Orionis
James Webb: Die Region Theta2 Orionis

James Webb zeigt Foto des Orion-Balkens

Diesen Orion-Balken kann man auf der Hubble-Aufnahme auch erahnen, aber auf dem James-Webb-Bild sehen wir ihn wesentlich besser und das liegt am Infrarot-Licht. Die längeren Wellenlängen des infraroten Lichts – der Bereich, in dem James Webb das Universum betrachtet – sind in der Lage, den Staub zu durchdringen, was uns einen Blick in Regionen ermöglicht, die mit kürzeren Wellenlängen, wie dem sichtbaren Spektrum, unmöglich zu sehen sind. Und das erlaubt uns, ganz neue Vorgänge in kosmischen Regionen wahrzunehmen. Die Astronomin  Emilie Habart sagt: “Wir waren noch nie in der Lage, die feinen Details zu sehen, wie interstellare Materie in dieser Umgebung strukturiert ist, und herauszufinden, wie sich Planetensysteme in Gegenwart dieser harten Strahlung bilden können.” Alleine der Gedanke an potentielle Planeten dort ist super faszinierend. 

Stellt euch mal vor, eine außerirdische Zivilisation entsteht auf einem Planeten inmitten dieser bunten, dichten Gaswolken. Was für einen unglaublichen Nachthimmel müsste man dort haben? Die Daten von James Webb werden derzeit noch ausgewertet und die Chancen stehen sehr gut, dass wir dort Exoplaneten entdecken werden. Schaut euch mal diesen Teil der Aufnahme hier an, für mich eine der spektakulärsten Entdeckungen von James Webb bisher überhaupt. 

Foto von James Webb von einer Akkretionsscheibe
James Webb fotografiert Akkretionsscheibe

Hier sehen wir einen ganz jungen Stern, der sich tatsächlich wie eine Raupe in so einer Art Kokon befindet. Und mitten in dem Kokon sehen wir eine Akkretionsscheibe, also eine Ansammlung von Staub und Gas, die um den jungen Stern herum wirbelt. Und genau so haben auch die Planeten in unserem Sonnensystem vor vier bis fünf Milliarden Jahren begonnen, zumindest die inneren vier Planeten Merkur, Venus, Erde und Mars. Um die junge Sonne wirbelten in einer Akkretionsscheibe Staub, Steinchen, Eisklumpen und Gas und aus diesem ganzen Zeug entstanden letztlich die Planeten. Wir stehen gerade auf einem Produkt der Akkretionsscheibe. Und genau diesen Prozess hat James Webb hier eingefangen. Ein junger Stern, der in einen Kokon aus interstellarem Gas gebettet ist und um den herum gerade Planeten, Monde und Zwergplaneten entstehen. Bis dann dort wirklich Planeten und vielleicht sogar Leben entsteht, werden noch einige hundert Millionen oder Milliarden Jahre vergehen.

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Tscherenkow-Strahlung: Schneller als das Licht

Darstellung von Lichtgeschwindigkeit und Tscherenkow-Strahlung

Schneller als Lichtgeschwindigkeit geht nicht? Oh doch. Forscher haben herausgefunden, dass unsere grundlegenden Annahmen über das Universum und die Lichtgeschwindigkeit fehlerhaft sein könnten. 

Lichtgeschwindigkeit ist das schnellste, was es gibt. Diesen Satz hört man oft, aber er ist unvollständig. Er sagt nichts darüber aus, worin sich das Licht bewegt. Gemeint ist mit diesem Satz die Geschwindigkeit des Lichts im Vakuum. Und die beträgt 299.792 Kilometer pro Sekunde. Das bezeichnet man als maximale Geschwindigkeit c. Laut Albert Einsteins Relativitätstheorie ist das das Maximum, das erreicht werden kann. Nicht nur von Licht, sondern auch von den anderen elektromagnetischen Wellen.

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Lichtgeschwindigkeit hängt davon ab, worin sich Licht bewegt. Wenn es sich nicht im Vakuum bewegt, wird es langsamer. Im Wasser etwa legt das Licht nur noch 230.769 Kilometer pro Sekunde zurück. Es ist logisch, dass das Licht im Wasser langsamer ist, denn die Lichtteilchen, die sogenannten Photonen, müssen sich ihren Weg durch die Wassermoleküle erkämpfen. Das kostet Zeit. Genau so wie Ihr langsamer im Schwimmbecken seid, als wenn Ihr am Rand des Beckens entlang laufen würdet. Natürlich ist das Licht trotzdem noch immens schnell und natürlich können wir auch immer noch korrekterweise von Lichtgeschwindigkeit sprechen, nur eben nicht von der maximalen Geschwindigkeit c. 

Die Tscherenkow-Strahlung im Kühlwasser eines Reaktors

Wenn Licht durch Vanillepudding fliegt

Und jetzt kommt ein Effekt ins Spiel, bei dem die Lichtteilchen überholt werden können, bei dem etwas schneller wird als die Lichtgeschwindigkeit. Geladene Teilchen können schneller fliegen als das Licht, wenn das Licht durch ein Medium abgebremst wird. Also zum Beispiel durch Wasser. Oder irgendwas anderes wie Vanillepudding. Diesen Effekt nennt man Tscherenkow-Strahlung oder Tscherenkow-Licht. Beobachten kann man das beispielsweise im wassergefüllten Reaktorgefäß von Atomkraftwerken. Die durch die Strahlung der Brennelemente ausgesandte Elektronen, also negativ geladene, subatomare Teilchen, rasen dort so schnell durch das Reaktorwasser, dass das von angeregten Atomen abgegebene Licht nicht hinterherkommt. Es entsteht eine Art subatomare Kielwelle – quasi ein Überschallkegel aus Licht, der sich in Kernkraftwerken als eine Art bläuliches Schimmern äußert. 

Noch mal zurück zum Schwimmbecken. Stellt euch vor, Ihr zieht eure Bahnen im Wasser, durch eure Schwimmbewegung entstehen Wellen. Wellenberge und Wellentäler. Aber durch jede weitere Schwimmbewegungen gleicht ihr die vorherigen Wellen wieder aus. Insgesamt neutralisieren sich die Wellen, die Ihr durch eure Schwimmbewegungen erzeugt, da jede Welle die Welle von davor ausgleicht. Sie überlagern sich. Ihr seid aber sicherlich sehr gute Schwimmer und steigt deshalb noch mal ins Becken und zieht jetzt ein paar Bahnen mit Lichtgeschwindigkeit. Eure Schwimmgeschwindigkeit ist nun viel höher als die Geschwindigkeit der Wellen, denn die entstehen logischerweise nicht mit Lichtgeschwindigkeit. Die Wellen können sich nicht mehr überlagern, denn Ihr seid so schnell unterwegs, das es immer ein paar Wellen gibt, die vor allen anderen sind. Auf diese Art und Weise hättet Ihr im Schwimmbad eine Tscherenkow-Welle erzeugt. 

Beim Schwimmen werden Wellen erzeugt

Wie entsteht Tscherenkow-Strahlung?

Ganz einfach formuliert könnte man sagen, dass die Tscherenkow-Strahlung entsteht, wenn subatomare Teilchen durch ein Medium rasen und dabei schneller sind als das sich im Medium ausbreitende Licht. Die dabei entstehende subatomare Kielwelle ist dann schneller als Lichtgeschwindigkeit in diesem Medium. Einige von euch denken jetzt vielleicht, dass das ja geschummelt ist. Denn die Tscherenkow-Strahlung ist nicht schneller als das, was man gemeinhin mit dem Wort Lichtgeschwindigkeit meint, also nicht schneller als die maximale Geschwindigkeit c. Sie ist nur schneller als Lichtgeschwindigkeit außerhalb eines Vakuums. Stimmt, aber es ist trotzdem interessant, sich mal vor Augen zu führen, dass Lichtgeschwindigkeit nicht gleich Lichtgeschwindigkeit ist. 

Nichts verstanden? Was genau nicht?

Die Antwort lässt sich aus dem Tafelbild eigentlich leicht herleiten. Hol dir jetzt das nerdige T-Shirt!

Und jetzt kommt noch ein Clou. Könnte man das Prinzip der Tscherenkow-Strahlung nicht vielleicht doch auf die Lichtgeschwindigkeit im Vakuum anwenden? Könnten nicht auch außerhalb von Medien wie Wasser und Vanillepudding strahlende Kielwellen entstehen? Genau das wollten Forscher aus Schottland von der University of Strathclyde in Glasgow herausfinden. Und ihre Überlegungen basieren – wie könnte es anders sein – auf der mysteriösen Quantenphysik, dem Teil der Physik, der sich mit der verrückten Welt der kleinsten Teilchen beschäftigt. In ihren Berechnungen ermittelten die Forscher, wie schnell ein Teilchen sein müsste und durch welche Feldstärken es fliegen müsste, damit im Vakuum Tscherenkow-Licht in Form von Gammastrahlung frei wird. Und tatsächlich: Sie kamen zu dem Ergebnis, dass Quantenfluktuationsteilchen Licht aussbremsen können, wenn sie einem starken Magnetfeld ausgesetzt werden. “Das impliziert, dass energiereiche Partikel im All auch Tscherenkow-Strahlung freisetzen können, wenn sie durch starke elektromagnetische Felder fliegen”, so die Forscher. 

Millisekunden-Pulsare erzeugen starkes Magnetfeld

Aber wo könnte man eine solch extreme Umgebung finden, in der ein so starkes Magnetfeld vorhanden ist? Die Antwort: Im Umfeld der sogenannten Millisekunden-Pulsare. Das sind gestorbene Sterne, die nun mit einer hohen Geschwindigkeit um sich selbst rotieren und dabei pulshafte Strahlungsausbrüche abgeben, daher der Name Pulsar. Millisekunden-Pulsare rotieren in nur rund zwanzig Millisekunden um sich selbst. Einige dieser Millisekunden-Pulsare konnte man aufspüren, was gar nicht so einfach ist, denn die Objekte sind sehr klein, da die Restmasse des Sterns in ihnen sehr stark verdichtet ist. Wir reden hier von Größen von nur 15 bis 20 Kilometern, also für kosmische Objekte winzig. Aber diese Millisekunden-Pulsare verraten sich durch Gammastrahlung. Und hier fügen sich nun die Ergebnisse der schottischen Forscher perfekt zusammen, denn ein Teil dieser verräterischen Strahlung könnte Tscherenkow-Strahlung sein. Die Forscher schreiben: “Die Astrophysik liefert uns damit Umgebungen, in denen der Vakuum-Tscherenkow-Effekt beobachtet werden könnte. Für Protonen der energiereichsten kosmischen Strahlung wird dort die hochenergetische Abstrahlung vollständig vom Tscherenkow-Prozess dominiert.”

Gibt es etwas, das schneller als das Licht ist? Ja, die Tscherenkow-Strahlung. Mehr dazu hier.
Künstlerische Darstellung eines Pulsars

Das würde perfekt passen, denn in der Vergangenheit beobachteten Astronomen im Herzen vieler Galaxien, auch innerhalb unserer eigenen Milchstraße, ein mysteriöses Gammaglühen. Eine Strahlung im Gammabereich, deren Quelle völlig unbekannt ist. Einige Astronomen versuchen dieses Gammaglühen mit Effekten der Dunklen Materie zu erklären – das Problem ist nur, dass niemand so richtig weiß, was Dunkle Materie eigentlich ist. Es handelt sich bislang um ein komplett theoretisches Konstrukt. Die Tscherenkow-Strahlung im Vakuum, ausgelöst durch Millisekunde-Pulsare könnte eine realistischere Erklärung für das Gammaglühen sein. Aber – und leider gibt es immer ein aber – die Vakuum-Tscherenkow-Theorie ist eben auch nur das. Eine Theorie. Es fehlt mangels besserer Erforschungsmöglichkeiten dieser extremen Umgebungen um die Pulsare herum noch der letztliche Beweis. Es ist aber dennoch eine plausible Idee, denn sie würde nicht gegen die Relativitätstheorie verstoßen. Auch die Vakuum-Tscherenkow-Strahlung würde keine Geschwindigkeiten jenseits der maximalen Geschwindigkeit c erzeugen. Denn durch die Quantenfluktuation im starken Pulsar-Magnetfeld werden die Lichtteilchen ja verlangsamt und dadurch kann dann wiederum eine Tscherenkow-Kielwelle entstehen, die schneller als das verlangsamte Licht ist, aber nicht schneller als die maximale Geschwindigkeit c. Das Forscherteam schreibt: “Unsere theoretische Vorhersage ist sehr spannend, denn sie könnte Antworten auf einige grundlegende Fragen liefern – darunter auch nach dem Ursprung des Gammaglühens im Herzen von Galaxien. Gleichzeitig bietet sie eine neue Möglichkeit, fundamentale Theorien an ihre Grenzen zu bringen und so zu testen.”

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Schwerkraft: Hatte Einstein Unrecht?

Darstellung der Schwerkraft

Sind Einsteins Theorien über die Schwerkraft falsch? Und kommen wir dem Rätsel der Dunklen Energie näher? Forscher haben in einem spektakulären Experiment einen Durchbruch erzielt.

Wie schaffen wir es eigentlich, auf der Erde zu stehen? Ganz einfach: durch Schwerkraft. Diese fundamentale Kraft des Universums ist gar nicht so einfach zu verstehen und gibt Forschern immer wieder erhebliche Rätsel auf. Wir spüren sie permanent, sie hält unsere Erde im Orbit um die Sonne, sie hält die gesamte Galaxis, die Milchstraße, zusammen. Aber was ist Schwerkraft? Wodurch entsteht sie? 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Dunkle Energie: Expansion des Kosmos wird immer schneller

Licht beispielsweise entsteht durch Photonen, winzige Lichtteilchen. Wodurch entsteht aber Schwerkraft? Es verdichten sich zwar die Hinweise, dass das mysteriöse Higgs-Boson das Elementarteilchen der Gravitation sein könnte, aber die komplette Auswirkung der Schwerkraft auf die Raumzeit lässt sich damit noch nicht gänzlich erklären. Das größte Mysterium ist die Beziehung zwischen der Schwerkraft und der Dunklen Energie. Schwerkraft hält die Dinge zusammen. In den kleineren Bereichen des Kosmos ist sie die dominierende Kraft. Unsere Milchstraße etwa ist gravitativ an die Andromeda-Galaxie gebunden, weshalb die beiden Sterneninseln sich aufeinander zubewegen und in ferner Zukunft zu einer Riesengalaxie verschmelzen werden. Aber in den ganz großen Bereichen des Kosmos verliert die Schwerkraft ihre Dominanz, hier übernimmt die Dunkle Energie. 

Nichts verstanden? Was genau nicht?

Die Antwort lässt sich aus dem Tafelbild eigentlich leicht herleiten. Hol dir jetzt das nerdige T-Shirt!

Der Kosmos expandiert – und das schon seit dem Urknall, seit 13,8 Milliarden Jahren. Aber obwohl der Urknall so lange her ist, schwächt sich diese Expansion nicht ab, sondern beschleunigt sich. Der Weltraum wird immer schneller immer größer. Es muss eine mysteriöse Kraft geben, die ihn weiterhin zum wachsen bringt. Da niemand weiß, was das sein könnte, bezeichnet man diese Kraft als Dunkle Energie. 

Das Universum expandiert

Ist die Theorie der Schwerkraft falsch?

Es gibt viele Ideen, was diese Dunkle Energie sein könnte. Eine Art Energiefeld quer durch Zeit und Raum, das einen abstoßenden Druck wie eine Art Antigravitation ausübt. Beweise dafür gibt es nicht. Da drängt sich der Verdacht auf, dass Dunkle Energie vielleicht in der Form gar nicht existiert, sondern mit unserer Theorie der Schwerkraft etwas falsch sein muss. Einige Forscher denken, dass die Schwerkraft sich auf den großen kosmischen Skalen anders verhält als im Kleinen. Während sie hier alles zusammenhält, drückt sie im Großen vielleicht Dinge auseinander. Oder sie hat sich im Laufe der Entwicklung des Kosmos verändert. Vielleicht war sie in den Anfangstagen des Universums stärker und wurde dann schwächer. Eine kontinuierliche Abnahme der Stärke der Gravitation seit einigen Milliarden Jahren würde die stärker werdende Beschleunigung ziemlich gut erklären, oder? 

Solche alternativen Schwerkrafttheorien erfreuen sich großer Beliebtheit und mangels Indizien könnte das genau so gut wahr sein wie die Idee der mit der Gravitation konkurrierenden Dunklen Energie. Einziges Manko: Eine variierende Schwerkraft über die Zeit hinweg stünde im Widerspruch mit Albert Einsteins Allgemeiner Relativitätstheorie. 

Gravitationslinsen: Forscher suchen nach Krümmung in Raumzeit

Ein Forscherteam von der Dark Energy Survey Collaboration hat nun in einem spektakulären Experiment diese alternative Gravitationstheorie auf die Probe gestellt, um das Verhältnis zwischen Schwerkraft und Dunkler Energie zu klären. Sie haben einen der bisher präzisesten Tests von Albert Einsteins Allgemeiner Relativitätstheorie durchgeführt und dabei riesige kosmische Entfernungen betrachtet. Wir reden hier von Entfernungen von bis zu fünf Milliarden Lichtjahren. Mal zum Vergleich: Unsere Milchstraße besitzt einen Durchmesser von nur hund100.000 bis 200.000 Lichtjahren. Auf dieser gigantischen Skala haben die Forscher Galaxien untersucht und subtile Verzerrungen gemessen, die durch die Schwerkraft entstehen, wenn sie die Raumzeit verformt. Stellt euch die Raumzeit wie eine Art für uns unsichtbares Trampolin vor, das durch die Gravitation der Himmelskörper eingedellt wird. Genau nach diesen Raumzeittrampolindellen suchten die Forscher. 

Ein Schwarzes Loch als Gravitationslinse

Den Effekt, den die Forscher sich zunutze machten, nennt man Gravitationslinseneffekt. Bei schweren, uns näher gelegenen Objekten, wie Schwarzen Löchern, innerhalb der Galaxis, ist dieser Effekt relativ stark. Auf den großen kosmischen Skalen, bei weit entfernten Galaxien ist er eher schwach, weshalb man ihn in diesem Fall als schwache Gravitationslinse bezeichnet. Durch das Ausfindigmachen dieser schwachen Gravitationslinsen konnten die Dark Energy Survey Wissenschaftler die Effekte der Schwerkraft großflächig sogar in der Vergangenheit bestimmen, denn jeder Blick in den Weltraum ist ein Blick in der Zeit zurück. Wir sehen die Objekte so, wie sie aussahen, als das Licht sich auf den Weg gemacht hat. Milliarden Lichtjahre entfernte Galaxien sehen wir also weit, weit in der Vergangenheit. 

Gravitation im Universum gleich stark; Dunkle Energie existiert wahrscheinlich

Die Forscher untersuchten knapp 100 Millionen Galaxien in unterschiedlichen Entfernungen nach Hinweisen, dass die Schwerkraft an irgendeinem Zeitpunkt des Kosmos schwankte. Und was haben sie entdeckt? Nichts. Keine Abweichung. Die Gravitation war während der gesamten Geschichte des Universums gleich stark. Tatsächlich verhalten sich die untersuchten Galaxien, von denen die ältesten Milliarden Jahre alt sind, genau so, wie es Einsteins Theorie es vorhersagt. Albert Einstein hat also mal wieder komplett Recht behalten.

Viele Gravitationslinsen auf einem Bild

Dennoch haben die Forscher etwas entdeckt. Und zwar, dass die alternativen Theorien der Gravitation wahrscheinlich nicht korrekt sind und dass Dunkle Energie wahrscheinlich existiert. Denn, wenn nicht die Gravitation selbst für die beschleunigte Expansion des Kosmos verantwortlich ist, dann wohl eben doch die ominöse Dunkle Energie. Was uns wieder mit der Frage zurücklässt: Was ist Dunkle Energie? Und ein paar letzte Zweifel an Einsteins Gravitationstheorie sind dennoch erlaubt. Die beteiligte Forscherin Agnès Ferté sagt: “Es gibt immer noch Raum, um Einsteins Gravitationstheorie in Frage zu stellen, da die Messungen immer präziser werden. Wir haben noch so viel zu tun, bevor wir für Euclid und Roman bereit sind. Deshalb ist es wichtig, dass wir weiterhin mit Wissenschaftlern auf der ganzen Welt an diesem Problem zusammenarbeiten.” Mit Euklid und Roman meint sie zwei geplante Weltraumteleskope, die uns den Antworten auf diese große Fragen erheblich näher bringen werden. Das Weltraumteleskop Euclid der ESA, das 2023 ins All starten soll, ist komplett auf die Suche nach Dunkler Energie ausgerichtet. Das Nancy Grace Roman Teleskop wird wie James Webb ein Infrarot-Weltraumteleskop sein, aber mehr auf den Blick auf die ganz großen kosmischen Skalen ausgelegt sein, während James Webb eher Einzelobjekte ins Visier nehmen kann. Nancy Grace Roman wird also dafür prädestiniert sein, die Zusammenhänge in Bereichen von Milliarden Lichtjahren genauer zu beleuchten. Es wird allerdings frühestens im Jahre 2026 starten. 

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Ferne Welten: James Webb fotografiert Exoplaneten

Künstlerischer Darstellung vom James-Webb-Teleskop und einem Exoplaneten

Das James-Webb-Teleskop hat erstmals ein Bild von einer außerirdischen Welt geschossen: einem Planeten in einem fremden Sternsystem. Astronomen sprechen von einem entscheidenden Moment. Und so sieht das Bild aus.  

Heute mal wieder etwas Bahnbrechendes: James Webb hat erstmals ein Bild eines Exoplaneten geliefert. Ein Foto eines Planeten, der sich nicht in unserem Sonnensystem befindet, sondern um einen fremden Stern innerhalb unserer Galaxis kreist. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Aber ist das jetzt so etwas Besonderes? Man hat bereits über 5.000 Exoplaneten entdeckt – ein Bruchteil von der Anzahl an Exoplaneten, die es insgesamt in der Milchstraße gibt. Für alle Mathe-Freunde: Es gibt mindestens 200 Milliarden Sterne in der Milchstraße und um fast jeden davon drehen sich mindestens zwei Planeten. Dann kämen wir also schon auf 400 Milliarden Planeten alleine in unserer Galaxis und das ist schon eher eine pessimistische Rechnung. Ob es auf irgendeinem dieser Planeten außerirdisches Leben gibt? Diese Frage können wir vielleicht mit dem James-Webb-Teleskop beantworten. 

Transitmethode: James Webb kann direkt Exoplaneten ablichten

Es handelt sich bei der Aufnahme des Exoplaneten um eine Direktaufnahme. James Webb hat in Richtung dieses 350 Lichtjahre entfernten Sternsystems geschaut, Infrarotwellen aufgenommen und daraus konnte dann das Bild des Planeten erstellt werden. Das ist unglaublich; normalerweise konnten Exoplaneten fast ausschließlich indirekt aufgespürt und untersucht werden und zwar meist durch die Transitmethode. Man beobachtete fremde Sterne und zeichnete deren Helligkeit auf. Wenn es plötzlich zu einer Senkung der Helligkeit kam, die sich aber einige Zeit später wieder ausgeglichen hat, konnte man sich sicher sein, einen Exoplaneten gefunden zu haben. Denn in dem Moment, in dem ein Planet von uns aus gesehen vor seinem Stern entlang wandert, wird ein Teil des Lichts abgeschirmt und die Helligkeit sinkt. James Webb hingegen braucht keine indirekten Methoden, James Webb ist so leistungsstark, dass es Exoplaneten direkt anvisieren und entdecken kann und nicht darauf angewiesen ist, dass ein Planet erst mal vor seinem Stern vorbeiwandert. 

Und das eröffnet uns eine neue Ära der Planetenforschung. Der britische Astrophysik-Professor Sasha Hinkley sagt: “Dies sind die ersten direkten Bilder eines Exoplaneten, die mit James Webb aufgenommen wurden. Das ist ein transformativer Moment. Nicht nur für Webb, sondern auch für die Astronomie im Allgemeinen.” James Webb blickte in die Richtung des Sternbilds Centaurus und untersuchte den Stern HIP65426, der ungefähr doppelt so viel Masse wie unsere Sonne hat. 

James Webb: Foto von Exoplanet HIP65426b

James Webb: Foto des Exoplaneten

Oben seht Ihr die Aufnahmen des Exoplaneten HIP65426b. Auf den ersten Blick sehen die Aufnahmen nur wie verschwommene Punkt aus, aber denkt dran, es sind Direktaufnahmen dieser fernen Welt. Der Planet ist siebenmal so massereich wie der Jupiter, aber etwa dreimal weiter von seinem Stern entfernt als der Neptun von unserer Sonne. Es handelt sich also um einen eisigen Super-Jupiter. Die verschiedenen Farben entstehen durch Aufnahmen in verschiedenen Wellenlängen des Infrarotlichts. James Webb hat für die verschiedenen Infrarotbereiche jeweils eigene Instrumente an Bord. Die bläulichen Bilder stammen vom Nircam-Instrument, die rötlichen vom Instrument Miri. Das weiße Sternchen auf den Aufnahmen zeigt die Position des Sterns, um den sich der Exoplanet dreht, den man wegen der Helligkeit auf den Aufnahmen ausgeblendet hat. Diese Helligkeit des Zentralgestirns auszublenden, ist gar nicht so einfach. Denn für die Infrarotaugen von James Webb ist der Stern bis zu 10.000 Mal heller als der Exoplanet HIP65426b und überstrahlt die geringe Lichtmenge, die wir vom Planeten empfangen, komplett.

Auf der unteren Aufnahme seht Ihr wie James Webb dieses System standardmäßig sieht. Einfach ein großer heller Licht-Blob des Sterns, der alles andere über strahlt. Glücklicherweise ist das James-Webb-Teleskop mit speziellen Instrumenten ausgerüstet, den sogenannten Koronografen, oder auf englisch Coronagraph.

Aufnahme ohne Koronograf

Die äußeren Bereiche eines Sterns bezeichnet man als Corona. Wenn Koronografen genau vor einem Stern positioniert werden, können sie den Großteil des einfallenden Lichts blockieren. Koronografen werden zum Beispiel auch zur Erforschung der äußersten Schichten der Sonne eingesetzt, wie Ihr unten in einer spektakulären Aufnahme der NASA von unserer Sonne seht. Durch die Verwendung von Koronografen können wir bei unserer Sonne beispielsweise die Helligkeit ausblenden und dadurch Phänomene in ihren Randbereichen untersuchen wie etwa heftige Plasma-Ausbrüche, so genannte Protuberanzen. 

Wismut Kristall

Ebenfalls sehr fotogen: Der Wismut-Kristall

Dieser Kristall sorgt für Farbenspiele in deinem Mineralienregal!

Und James Webb kann mit Hilfe der Koronografen fremde Sterne ausblenden und so ihre Exoplaneten aufnehmen. Die Astronomin Aarynn Carter von der University of California beschreibt es so: “Die Aufnahme dieses Bildes war wie eine Schatzsuche im Weltraum. Zuerst konnte ich nur das Licht des Sterns sehen, aber mit einer sorgfältigen Bildbearbeitung konnte ich dieses Licht entfernen und den Planeten freilegen.”

Foto von Exoplaneten: Koronografen sind notwendig

Das klingt alles einfacher als es ist – denn leider kann auch der Koronograf nicht das komplette Licht des Sterns ausblenden. Die Astronomen müssen so ein System dann über einen längeren Zeitraum beobachten und können dann nach und nach in Detektivarbeit herausfinden, wo sich der Exoplanet versteckt. Das alles zeigt, um was für eine unglaubliche Maschine es sich beim James-Webb-Teleskop handelt. Die direkte Aufnahme von Exoplaneten gelang vorher nur in absoluten Einzelfällen, jetzt wird sie auf der Tagesordnung stehen. Und diese Daten zeigen auch, dass James Webb in der Lage sein wird, Planeten mit geringerer Masse als je zuvor zu entdecken. Vor James Webb waren wir meist auf die Entdeckung von Super-Jupitern beschränkt, weil die sehr groß, schwerfällig und kaum zu übersehen sind. Aber James Webb wird auch Exo-Uranuse und Exo-Neptuns direkt abbilden können, die nächsten Wochen und Monate werden also wirklich aufregend. 

Vergleich mit der Erde: Das Trappist-1-System

James Webb: Bald Foto von TRAPPIST-1

Vor allem Folgendes sorgt für Spannung: In den kommenden Monaten wird James Webb seine Spiegel auf TRAPPIST-1e richten, einen möglicherweise bewohnbaren Planeten von der Größe der Erde, der nur 39 Lichtjahre von der Erde entfernt ist. Das TRAPPIST-1-System ist vielleicht der vielversprechendste Ort für außerirdisches Leben, den wir kennen. Es enthält sieben erdähnliche Exoplaneten und wenn James Webb hier genauer hinschaut, ist das vermutlich die größte Chance für die Entdeckung von außerirdischem Leben, die es in der Menschheitsgeschichte jemals gab. Aarynn Carter sagt: “Ich denke, das Spannendste ist, dass wir gerade erst angefangen haben. Es werden noch viele weitere Bilder von Exoplaneten folgen, die unser Gesamtverständnis ihrer Physik, Chemie und Entstehung prägen werden. Vielleicht entdecken wir sogar bisher unbekannte Arten von Planeten.”

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz