NASA entwickelt Lichtgeschwindigkeitsantrieb

Darstellung von Helical Engine im Weltraum

Steht die NASA kurz davor einen Lichtgeschwindigkeitsantrieb zu bauen? Könnten wir bald schon unser Sonnensystem verlassen und zu weit entfernten Sternen reisen?

Wer nachts hoch zu den Sternen blickt, kennt das Gefühl: die Faszination über die Schönheit und Größe des Kosmos und gleichzeitig die Enttäuschung darüber, dass man diese fremden Systeme und Planeten vermutlich niemals zu Gesicht bekommen wird. Die Distanzen im Weltraum sind gigantisch groß und mit herkömmlichem Antrieb nicht zu überbrücken. Alleine unser Nachbarstern, also der nächste Stern an unserem Sonnensystem, Proxima Centauri, ist 4,2 Lichtjahre von uns entfernt. Unsere derzeitigen Antriebe reichen noch nicht mal annähernd dafür aus, den nächsten Exoplaneten, Proxima Centauri B, zu besuchen. Müssen wir die Hoffnung aufgeben, dass wir unseren nächsten Urlaub statt auf Malle vielleicht doch auf Proxima B verbringen können? 

Processing…
Success! You're on the list.

Lichtgeschwindigkeit: Ingenieur hat Bauplan erstellt

Es gibt Hoffnung, denn ein NASA-Ingenieur sagt, er habe einen Bauplan für einen Lichtgeschwindigkeitsantrieb entwickelt. David Burns hat ein Triebwerkskonzept entwickelt, das theoretisch auf 99 Prozent der Lichtgeschwindigkeit beschleunigen könnte – ganz ohne Treibstoff. Aber was heißt überhaupt Lichtgeschwindigkeit? Wie im normalen Leben auf der Erde gibt es auch im Universum gewisse Regeln. Die nennt man Naturgesetze und eines davon lautet: Schneller als Lichtgeschwindigkeit im Vakuum geht nicht. Die Relativitätstheorie besagt, dass sich die Geschwindigkeit von Licht, das sich durch ein Vakuum bewegt, nie verändert. Mit gerundet 300.000 Kilometern pro Sekunde erreicht Licht die höchstmögliche Geschwindigkeit im Universum. Das gilt übrigens nicht nur für Licht, sondern für alle anderen elektromagnetischen Wellen. 

Ein Raumschiff fliegt durch die Raumzeit

Diese Geschwindigkeit ist bekannt als maximale Geschwindigkeit c. Woraus ergibt sich diese maximale Geschwindigkeit? Ein Raumschiff, das durch den Kosmos fliegt, bewegt sich durch Raum und Zeit. Je schneller es sich durch den Raum bewegt, desto langsamer vergeht die Zeit. Ihr erinnert euch an das Konzept der Raumzeit. Jetzt stellen wir uns ein Photon vor, ein Lichtteilchen. Das bewegt sich natürlich wesentlich schneller als ein Raumschiff, nämlich mit der maximalen Geschwindigkeit c. Diese Geschwindigkeit hat einen derart massiven Einfluss auf die Raumzeit, dass die Zeitkomponente komplett entfällt. Die Zeit wird so sehr verlangsamt, dass sie stillsteht – für das Licht existiert so gesehen keine Zeit. Und das stellt die maximale Ausreizung der Beziehung zwischen Raum und Zeit dar. Mehr als das Wegfallen der Zeitkomponente geht nicht und deswegen ist an diesem Geschwindigkeitspunkt die maximale Geschwindigkeit erreicht. 

Wie kann man Lichtgeschwindigkeit erreichen?

Wie kann es denn nun gelungen sein, mit einem Antrieb annähernd Lichtgeschwindigkeit zu erreichen? David Burns nennt sein Konzept Helical Enginge, also auf Deutsch Helix-Antrieb, und es macht sich masseverändernde Effekte zunutze, die bei annähernder Lichtgeschwindigkeit auftreten. Stellt euch mal folgende Konstruktion vor: Ein Kasten befindet sich auf einer reibungsfreien Oberfläche. Im Inneren dieses Kastens befindet sich eine Stange, auf der ein Ring gleiten kann. Wenn eine Feder im Inneren des Kastens dem Ring einen Schubs gibt, gleitet der Ring entlang der Stange in die eine Richtung, während der Kasten in die andere zurückschnellt. Wenn der Ring das Ende des Kastens erreicht, springt er zurück, und die Rückstoßrichtung des Kastens ändert sich ebenfalls. Das ist das euch bestimmt bekannte Prinzip der Aktion und Reaktion – auch bekannt als Newtons drittes Bewegungsgesetz. 

Newton immer dabei – mit diesem Shirt

Hol dir jetzt das fantastische Newton-Shirt und befolge stets das erste Gesetz!

Genau dieses Aktion-Reaktion-Gesetz machen sich auch klassische Raketen zunutze, die Treibstoff in die eine Richtung abfeuern, um in die andere Richtung empor zu fliegen. So weit, so unspektakulär. In unserem Kasten würde das nun einfach dazu führen, dass der Kasten gleichmäßig hin und her wackeln würde, der Ring bekommt ja von jeder Feder immer denselben Rückstoß. Mit so einem Kasten kommen wir sicherlich nicht nach Proxima Centauri. Aber was wäre, wenn die Masse des Rings viel größer wäre? Dann würde der Kasten an einem Ende einen größeren Stoß erhalten als am anderen. Die Aktion würde die Reaktion übertreffen und die Kiste würde nach vorne beschleunigt – Richtung unendliche Weiten! 

Helical Drive: Möglich mit einem Teilchenbeschleuniger

Aber: Wenn die Aktion die Reaktion ohne externe Einwirkung übersteigt, hätten wir dann nicht Newtons drittes Gesetz und damit einen der Grundsätze der Physik verletzt? Nein, denn der Helical Drive macht sich Effekte zunutze, die nahe der Lichtgeschwindigkeit auftreten. Einsteins spezielle Relativitätstheorie besagt, dass Objekte an Masse gewinnen, wenn sie sich der Lichtgeschwindigkeit nähern, ein Effekt, der übrigens auch in Teilchenbeschleunigern wie dem Large Hadron Collider im Forschungszentrum CERN berücksichtigt werden muss. Die Ausnutzung dieses Effekts ist das Kernstück des Helical Drives.

Ähnlich wie der Large Hadron Collider funktioniert auch Helical Engine

Aber natürlich funktioniert das Ganze im Weltraum nicht wirklich mit einem Kasten, einer Stange und einem Ring. Dann könntet Ihr das Ding ja Zuhause bauen. Was cool wäre, aber man müsste in der Realität wohl den Ring durch einen kreisförmigen Teilchenbeschleuniger ersetzen, in dem Ionen, also elektrisch geladene Atome, schnell auf immense Geschwindigkeit beschleunigt und ebenso schnell wieder abgebremst werden können. Und was machen wir mit dem Kasten und dem Stab? Brauchen wir gar nicht, stattdessen bauen wir den Teilchenbeschleuniger spiralförmig. Er fungiert dann sowohl als Kasten, Stange, Ring und Feder. Mit einem solchen spiralförmigen Teilchenbeschleuniger, der Ionen auf annähernde Lichtgeschwindigkeit bringt, könnten wir durch den massebeinflussenden Effekt der Lichtgeschwindigkeit also den Helical Drive Realität werden lassen. 

Das Problem mit der Energie

David Burns beschreibt das so: “Das Triebwerk beschleunigt die in einer Schleife eingeschlossenen Ionen auf mäßige relativistische Geschwindigkeiten und variiert dann ihre Geschwindigkeit, um ihre Masse leicht zu verändern. Das Triebwerk bewegt die Ionen dann entlang der Bewegungsrichtung hin und her, um Schub zu erzeugen.” Das klingt jetzt erst mal alles sehr durchdacht und raffiniert. Aber: Ein paar praktische Probleme gibt es doch. Einige Forscher haben nachgerechnet und kamen zu dem Schluss, dass das spiralförmige Gebilde gigantische Ausmaße haben müsste. Damit das Konzept funktioniert, müsste es etwa 200 Meter lang und zwölf Meter im Durchmesser sein. Das wäre sicherlich noch machbar, aber das größte Problem ist der Energieaufwand. Damit der Helix-Antrieb funktioniert, müsste man Unmengen an Energie hineinstecken. Denn er benötigt 165 Megawatt Leistung, um nur 1 Newton Schub zu erzeugen, was in etwa der Kraft entspricht, die man zum Tippen auf einer Tastatur benötigt. Also man müsste bereits große Mengen Energie investieren, um auch nur die Kraft eines Tippens auf einer Tastatur herauszubekommen. 

Andererseits könnte sich die Menge an Energie, die man reinstecken muss, im Vakuum des Weltraums reduzieren. Dennoch wird es wohl dabei bleiben, dass der Helix-Antrieb extremst energieineffizient bleibt. Aber das wichtigste ist: Der Helix-Antrieb würde funktionieren und er würde durch die Anwendung der speziellen Relativitätstheorie nicht das Aktion-Reaktionsprinzip verletzen und alleine dadurch hebt er sich schon von ähnlichen Konzepten wie beispielsweise dem sogenannten EM-Drive ab, der auf der Nutzung von Mikrowellen basiert, aber eben nach herrschender Meinung die newtonschen Gesetze verletzt. 

Bis wir wirklich einen praktisch einsetzbaren Helix-Antrieb haben, der uns zu den Sternen bringt, wird wohl noch etwas Zeit vergehen. Insbesondere brauchen wir dafür Durchbrüche in der Energieerzeugung, eventuell durch Kernfusion. Aber es ist ein erstes vielversprechendes Konzept und irgendwo muss man anfangen, um dann darauf aufzubauen.

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Kommentar verfassen