Wie eine Krabbe die Kernfusion vorantreibt

Krabbe und Kernfusion

Eine neue Technologie könnte uns den Durchbruch in der Kernfusion bringen. Was das mit extrem lauten Krebsen zu tun hat? Lest weiter! 

Kernfusion ist mittlerweile fast schon ein geflügelter Begriff – die Technologie verspricht uns gigantische Mengen an Energie und das ohne Risiko einer Kernspaltung und ohne radioaktiven Müll. Doch der richtige Durchbruch ist bislang noch nicht gelungen. Jetzt hat ein britisches Unternehmen eine Technik entwickelt, die vielversprechend erscheint.

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Wie die Natur die Forschung inspiriert

Kurioserweise hat dieser Durchbruch etwas mit einem Krebs zu tun. Technische Fortschritte wurden schon oft durch Vorgänge in der Natur inspiriert – und die Fähigkeiten des sogenannten Knallkrebs sind tatsächlich so unglaublich, dass sie quasi prädestiniert sind, als Grundlage für einen technologischen Durchbruch zu dienen. 

Der Name dieser Krebsart sagt es schon: Sie sind in der Lage, extrem laute Geräusche zu erzeugen. Verantwortlich dafür ist ein spezieller Mechanismus ihrer Scheren. Durch eine schnelle Bewegung und ein Verhaken der Scheren wird eine Blase im Wasser erzeugt, eine sogenannte Kavitationsblase, die durch das ruckartige Lösen der Scheren kurz darauf implodiert. Das klingt wenig aufregend, hat es aber in sich: Es entstehen Lichtblitze und Temperaturen von mehreren 1.000 Grad. Der Rekord liegt bei einer Messung von knapp 4.700 Grad. Der Effekt ist so heftig, dass er im zweiten Weltkrieg sogar die Sonargeräte des Militärs zur Ortung von U-Booten störte. 

Ein Stoffbeutel mit dem Aufdruck Sei wie ein Proton und bleib positiv

Sei wie ein Proton und bleib positiv!

Hol dir jetzt diesen coolen Beutel!

Krebse: Lauter Knall für die Paarung

Die Knallkrebse nutzen diesen Vorgang für zahlreiche Zwecke: Zum Beutefang, für Paarungskämpfe und auch zur Kommunikation mit Artgenossen. Gut, dass diese Krebse nicht besonders groß werden, ansonsten hätte wohl schon der ein oder andere Schwimmer am Strand eine böse und laute Überraschung erlebt. Die Fähigkeit der Knallkrebse ist faszinierend, aber was hat sie denn nun mit der Kernfusion zu tun?  

Gemäß des Lawson-Kriteriums müssen Atome zur Kernfusion extremem Druck oder hoher Bewegungsenergie, etwa durch Hitze ausgesetzt sein. Auf der Erde benötigen wir dafür enorme Mengen an Energie. Der bisherige Ansatz zur Trägheitsfusion war es, einen großen teuren Laser zur Zündung zu nutzen.

  • Querschnitt des ITER Gebäudes
  • First Light Fusion - Ausschnitt aus dem Werbefilm
  • Darstellung eines Kernfusionsreaktor
  • Knallkrebs

Das britische Unternehmen First Light Fusion hat sich eine kreative Alternative für diesen Prozess ausgedacht: Sie wollen die Fusionszündung durch ein Hochgeschwindigkeits-Projektil auslösen! Beschossen wird ein 10 mm kleiner Würfel, der sich im freien Fall im Reaktor befindet. In diesem Würfel befindet sich eine kleine Brennstoffkapsel mit Wasserstoff. Durch die Wucht des Aufpralls entsteht ein enormer Druck, der die Fusion startet. Eine Besonderheit ist der Würfel selbst. Dieser fungiert als eine Art Verstärker, welcher die Schockwellen auf die Oberfläche der Brennstoffkapsel verteilt. Im Gegensatz zur Laser-Kernfusion wird der Brennstoff also nicht nur aus einer, sondern aus mehreren Richtungen zusammengedrückt. Im Moment ist das Verfahren noch Theorie, doch sollte es tatsächlich wie geplant funktionieren, könnte man die Kosten für die Zündung um den Faktor 4 verringern!

First Light Fusion macht Kernfusion kommerziell

Der Mechanismus von First Light ähnelt also wirklich dem des Knallkrebs: Dessen Schere schnappt mit solcher Kraft und Geschwindigkeit zu, dass der Krebs eine Schockwelle im Wasser auslöst. Das Wasser wird regelrecht „zerrissen“, wodurch sich für einen sehr kurzen Moment eine Gasblase bildet, die in ihrem Inneren kurzzeitig Temperaturen von mehreren 10.000 Grad erreicht. Ob den kleinen Knallkrebsen bewusst ist, was für geniale Wissenschaftler sie eigentlich sind? Vielleicht lebt ja irgendwo auf dem Meeresboden ein Exemplar mit dem Namen Albert Knallstein oder so.

Bei First Light Fusion wird aber noch einiges an Arbeit und Forschung investiert werden müssen, um das Prinzip marktreif werden zu lassen. Der Physiker Dr. Ben Miles prognostiziert, dass es von diesem Zeitpunkt an noch etwa zehn Jahre dauern wird, bis die Knallkrebsfusion kommerziell nutzbar ist. Im Vergleich zu anderen Fusionsprojekten ist das ein extrem kurzer Zeitraum. Zum Vergleich: Am Fusionsreaktor ITER in Frankreich rechnet man erst in den 2050er Jahren mit wirklich erheblichen Energiegewinnen, die kommerziell nutzbar sind. Wenn sich die Erwartungen bewahrheiten, ist die Technologie von First Light Fusion also unsere beste Hoffnung auf den dringend ersehnten Energiedurchbruch.

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Durchbruch bei der Kernfusion

An der National Ignition Facility wurde ein spektakulärer Durchbruch bei der Kernfusion erzielt.

Es gibt zwei Arten der Kernenergienutzung: die Kernspaltung, die in den derzeitigen Kernkraftwerken genutzt wird, und die Kernfusion. Bei der Kernspaltung werden Uranatome in kleinere Atome gespalten, um Energie freizusetzen. Die Kernfusion ist im Prinzip der umgekehrte Prozess: Leichte Atome werden in schwerere Atome umgewandelt. Das ist derselbe Vorgang, der im Plasmakern der Sonne stattfindet und unseren Planeten mit jeder Menge Energie versorgt. Wenn man diesen Fusionsprozess auf der Erde imitieren könnte, wäre das wohl die Lösung für all unsere Energieprobleme – die Nutzung der Kernfusion könnte eine praktisch unbegrenzte Energiequelle bedeuten. Sie würde keine langfristigen Abfälle produzieren, keine Treibhausgase ausstoßen und kein Risiko von Kernschmelzen mit sich bringen. Deswegen träumt man schon lange von Kernfusionskraftwerken, doch bisher war das eben nur ein Traum. Es gibt unter Kernfusionsforschern den alten Witz: Fusionsreaktoren sind nur noch 20 Jahre entfernt! Und werden es auch immer sein! Dabei ist Fusion selbst technisch schon möglich. Doch das Problem ist, dass man am Ende ein Netto-Energie-Plus erzielen muss. Den Start der Energieerzeugung bezeichnet man als Zündung. Der derzeitige Rekord wurde 1997 vom Joint European Torus in Großbritannien aufgestellt, wo 16 Megawatt Leistung durch Magnetfusion erzeugt wurden, aber 23 Megawatt zur Zündung erforderlich waren. Das heißt: Beim besten Ergebnis, das man bisher erzielt hat, hat man netto jede Menge Energie verloren. 

Fusionskammer der National Ignition Facility

Es gibt zwei Möglichkeiten, die Kernfusion zu erreichen: den magnetischen Einschluss, bei dem starke Magnete verwendet werden, um das Brennstoffplasma für sehr lange Zeiträume einzuschließen, und den Trägheitseinschluss, bei dem sehr starke und kurze Laserpulse verwendet werden, um den Brennstoff zu komprimieren und die Fusionsreaktion in Gang zu setzen. Bisher wurde die Magnetfusion bevorzugt, da die für die Trägheitsfusion erforderliche Technologie, insbesondere die Laser, nicht ausgereift genug waren. Die Trägheitsfusion erfordert nämlich wesentlich höhere Energiegewinne, um die von den Lasern verbrauchte Energie wieder auszugleichen. Jetzt aber hat man aber mit neuer Technik im Bereich des Trägheitseinschlusses einen bahnbrechenden Erfolg erzielt und zwar an der National Ignition Facility, kurz NIF, am Lawrence Livermore National Laboratory in den USA. 

Der Brennstoff für die Kernfusion befindet sich in winzigen Metallkapseln

Das NIF nutzt 192 Laserstrahlen, die über einen Zeitraum von einigen Nanosekunden insgesamt 1,9 Megajoule Energie erzeugen, um die Fusionsreaktion auszulösen. Der Brennstoff befindet sich in einer Metallkapsel von einigen Millimetern Durchmesser, die, wenn sie von den Lasern erhitzt wird, Röntgenstrahlen aussendet, die den Brennstoff erhitzen und komprimieren. Es handelt sich hier also wirklich um hochkomplizierte Prozesse, die sich auf einem winzigen Raum abspielen. Mit diesem Verfahren wurde am 8. August 2021 eine bahnbrechende Energieerzeugung von 1,3 Megajoule erreicht, der höchste Wert, der jemals mit dem Trägheitsverfahren gemessen wurde, also der Wert an erzeugter Energie, der der erforderlichen Zündungsenergie am nächsten kam. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Stehen wir jetzt also kurz vor dem Kernfusionszeitalter? Unbegrenzte Energie und ungeahnter technischer Fortschritt? Leider noch nicht ganz. Denn obwohl das Ergebnis am NIF ein wahrer Durchbruch war, wurde auch hier nur 70 Prozent der investierten Energie am Ende aus dem Fusionsprozess herausbekommen. Es ist also noch ein weiter Weg bis wir wirklich Fusionsenergie im großen Stil erzeugen können. Dennoch gibt es gute Gründe für Optimismus. Fortschritte in der Computertechnik, künstlicher Intelligenz, supraleitende Magnete, 3-D-Druck, Materialwissenschaft und mehr dürften dazu beitragen, die Herausforderungen auf dem Weg zu einem funktionsfähigen Fusionsreaktor zu meistern. Der Durchbruch beim NIF ist zum Beispiel zum großen Teil auf bessere Computermodelle zurückzuführen.

Prototyp des Reaktors der Firma General Fusion

Hinzu kommt, dass viele Unternehmen aus der freien Wirtschaft sich immer mehr im Bereich Kernfusion engagieren. Alleine im letzten Jahr wurden rund 300 Millionen Dollar von privaten Unternehmen in die Kernfusionsforschung investiert und einige Projekte sind bereits in vollem Gange. General Fusion zum Beispiel, das unter anderem von Jeff Bezos finanziert wird, plant für nächstes Jahr den ersten Spatenstich für eine Kernfusionsanlage. Commonwealth Fusion Systems, das von Bill Gates unterstützt wird, rechnet sogar damit, bis zum Jahre 2025 einen Nettoenergiegewinn durch Kernfusion zu erzielen.  

Noch mehr Informationen zum Stand der Dinge im Bereich der Kernfusion erhaltet Ihr in diesem Video:

Impressum und Datenschutz