James Webb Teleskop: Diese Bilder sind atemberaubend

Foto vom James Webb Teleskop

Von Kosmischen Klippen bis Gravitationslinsen: Die ersten Fotos vom James Webb Teleskop sind da. Es ist wohl das Astronomie-Ereignis des Jahres. Und die Fotos sind mehr als beeindruckend.

Die letzten Tage waren aufregend. Es wurden endlich die Bilder veröffentlicht, auf die wir alle seit Monaten warten. Seit Dezember befindet sich das James Webb Teleskop, das beste jemals von Menschen gebaute Weltraumteleskop, im All und nun, mehr als ein halbes Jahr später haben wir endlich die ersten richtigen Aufnahmen vorliegen, die ihr euch hier im Detail angucken könnt.

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Bild 1: Analyse der Atmosphäre eines Exoplaneten

Foto von der Nasa: Analyse von WASP-96 b

Starten wir mal mit dieser Aufnahme hier. Es handelt sich nicht um ein wirkliches Bild, sondern um die Analyse der Atmosphäre des Exoplaneten WASP-96b, ein sogenannter Super Hot Jupiter, also ein Gasplanet, der größer als der Jupiter, aber aufgrund der Nähe zu seinem Stern sehr viel heißer ist. Auf den ersten Blick ist er ein ziemlicher Höllenplanet, auf dem ultra erhitzte Gasschichten apokalyptische Stürme bilden. Was James Webb hier entdeckt hat, ist absolut unerwartet: Das detaillierte Foto zeigt die eindeutige Signatur von Wasser sowie Hinweise auf Dunst und Wolken, die bei früheren Untersuchungen dieses Planeten nicht entdeckt wurden. Wenn es selbst auf solch einem Höllenplaneten verdunstetes Wasser in der Atmosphäre gibt, spricht viel dafür, dass überall in unserer Galaxis Wasser vorhanden ist. Mit dem ersten Nachweis von Wasser in der Atmosphäre eines Exoplaneten soll James Webb nun Hunderte von anderen Systemen untersuchen – wir dürfen also gespannt sein, was wir in der Atmosphäre anderer erdähnlicher Exoplaneten finden werden. Es kann gut sein, dass die Entdeckung von Biosignaturen, also organischen Stoffen auf einem fremden Planeten, nicht mehr in weiter Ferne liegt. 

Bild 2: Der südliche Ringnebel

Der südliche Ringnebel: Fotografiert vom James Webb Teleskop

Diese Aufnahme ist unfassbar beeindruckend. Wir sehen hier den südlichen Ringnebel, ein klassischer planetarischer Nebel. Es handelt sich um eine sich ausdehnende Gaswolke in 2.000 Lichtjahren Entfernung, die einen sterbenden Stern umgibt. Planetarische Nebel stellen das Ende von durchschnittlich großen Sternen wie unserer Sonne da. Diese Sterne blähen sich zum Roten Riesen auf, verlieren dabei Gas und implodieren dann zum Weißen Zwerg. Zurück bleibt ein schön symmetrischer Gasnebel. Die leistungsstarken Infrarot-Augen von James Webb zeigen uns hier zum ersten Mal einen zweiten sterbenden Stern, der vorher noch völlig unbekannt war. Unten seht Ihr einen Vergleich zwischen den Aufnahmen des südlichen Ringnebels links durch Hubble und rechts durch James Webb. Was für ein unglaublicher Unterschied!

Bild 3: Foto von Stephans Quintett

Stephans Quintett, fotografiert vom James Webb Teleskop

Dann haben wir diese Wahnsinnsaufnahme von Stephans Quintett, eine Gruppe von Galaxien, die gravitativ aneinander gebunden sind. Durch James Webb können wir in noch nie dagewesenem Ausmaße die Wechselwirkung zwischen diesen Galaxien sehen. Sterne entstehen aus Gas, vor allem Wasserstoff, und wenn zwei Galaxien miteinander verschmelzen, dann kommt es zu massiver Entstehung neuer Sterne. Der Blick von James Webb auf Stephans Quintett wird uns helfen, die Sternentstehung durch wechselwirkende Galaxien so gut zu verstehen wie noch nie zuvor. Man muss sich mal klar machen, was wir hier sehen: Funkelnde Sternhaufen mit Millionen jungen Sternen und Starburst-Regionen, in denen neue Sterne entstehen. Schwungvolle Schweife aus Gas, Staub und Sternen werden aufgrund gravitativer Wechselwirkungen von mehreren der Galaxien weggezogen. Wir sehen hier nichts anderes als das Schicksal, das auch unserer Galaxis, der Milchstraße, in mehreren Milliarden Jahren blühen wird, wenn sie mit der Andromeda-Galaxie kollidieren wird. Dann werden wir auch in eine Starburst-Ära, also in eine Zeit intensiver neuer Sternentstehung eintreten.

Bild 4: James Webb fotografiert Carina-Nebel

Die Kosmischen Klippen im Carina-Nebel

Als nächstes kommen wir zu einem echten Highlight-Foto: Der Aufnahme der sogenannten Kosmischen Klippen am Rande des Carina-Nebels. Der Carina-Nebel war schon immer eins der populärsten Beobachtungsobjekte im Weltraum, doch diese Details übertreffen alles. Unten wieder der Vergleich zwischen der Hubble-Aufnahme und der von James Webb. 

Vergleich zwischen dem Hubble-Foto und dem James Webb Foto: Der Carina Nebel

Der Blick von Webb auf die diese Kosmischen Klippen im Carina-Nebel enthüllt die frühesten, schnellen Phasen der Sternentstehung, die bisher verborgen waren. Im oberen Bereich des Bilds sehen wir hunderte vorher unbekannte Sterne, die noch relativ jung sind, also erst einige Millionen Jahre alt – für Sterne quasi noch Kindesalter. Diese jungen Sterne drücken durch ihre Strahlung den Rest des Nebels zusammen, wodurch diese deutliche Zweiteilung des Bildes entsteht. Was wir hier sehen, ist nicht weniger als das kosmische Material, aus dem auch wir bestehen. All die Elemente unseres Körpers wurden irgendwann mal im Weltraum erbrütet, auch wenn es kitschig klingt: Wir sind alle Sternenstaub.

Bild 5: Das James Webb Deep Field

Das wohl beste Foto: Das James Webb Deep Field

Und schließlich das wohl bedeutsamste Bild, das schon den Namen James Webb Deep Field bekommen hat: Das bisher schärfste und tiefste Infrarotbild des Universums überhaupt. Wir sehen hier den Galaxienhaufen SMACS0723, dessen Licht 4,6 Milliarden Jahre zu uns unterwegs war. Wie unvorstellbar dieses Bild ist, seht Ihr auch an diesem Vergleich. 

Vergleich des Deep Field zwischen Hubble und James Webb

Oben links derselbe Galaxienhaufen, fotografiert vom Hubble-Weltraum-Teleskop, das dafür mehrere Wochen benötigte, und daneben das Bild von James Webb, das in nur zwölf einhalb Stunden entstanden ist. Das ist wirklich ein enormer Qualitätssprung, so ein wenig wie der Sprung von DVD auf Blue-Ray oder so. Und noch etwas Unglaubliches: Das Bild von James Webb deckt einen Himmelsausschnitt ab, der nur etwa so groß ist wie ein Sandkorn, das jemand auf der Erde mit ausgestrecktem Arm Richtung Himmel hält. In einem solch winzigen Teil des Himmels verbirgt sich so etwas Unglaubliches: Unmengen von Galaxien mit Milliarden Planeten und Sternen. Unfassbar. Das wirklich faszinierende an dem Bild ist aber, dass der Galaxienhaufen nur Mittel zum Zweck ist. Er wird als Gravitationslinse genutzt, um einige der am weitesten entfernten Galaxien zu finden, die jemals entdeckt wurden. Schwerkraft krümmt Raum, Zeit und sogar das Licht und dadurch können wir schwere Objekte nutzen, um noch tiefer in den Weltraum zu schauen. Diesen Effekt nennt man Gravitationslinse und das James Webb Teleskop nutzt den Galaxienhaufen als gigantische Gravitationslinse, um den tiefsten Blick in den Weltraum vorzunehmen, den wir jemals gewagt haben. 

Buch Können wir auf Gravitationswellen surfen

Noch mehr tolle Bilder gibt es in diesem Buch!

Holt euch jetzt das Buch von Astro-Tim nach Hause – mit tollen selbstgezeichneten Bildern über das Universum.

Allerdings kratzt dieses Bild nur an der Oberfläche der Fähigkeiten von James Webb bei der Untersuchung des ganz frühen Universums. Wir können uns in Zukunft auf noch spektakulärere Deep Fields, auf noch tiefere Blicke in die Zeit kurz nach dem Urknall freuen. Nur zu Erinnerung: Das James Webb Teleskop soll mindestens 20 Jahre in Betrieb sein, diese ersten Bilder hier sind wirklich nur die Spitze des Eisbergs. Uns stehen wissenschaftlich gesehen fantastische Zeiten bevor. 

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Mit dem Universum stimmt was nicht

Expansion des Universums

Astrophysiker sind angesichts neuer Daten absolut ratlos: Irgendwas stimmt mit dem Universum nicht. Müssen wir unsere Annahmen über die Physik über den Haufen werfen? 

Irgendwas stimmt mit dem Universum nicht. Den Eindruck könnte man derzeit auch jedes Mal bekommen, wenn man sich die Nachrichten ansieht. Aber darum geht es heute nicht, es geht um die Kosmologie. Neue Daten des Hubble Teleskops zeigen: Unser Verständnis des Universums passt hinten und vorne nicht zusammen. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Alles begann mit dem Urknall

Um das zu verstehen, gibt es zunächst ein paar grundsätzliche Fakten über das, was wir glauben, über die Kosmologie zu wissen. Das Universum begann nach herrschender Ansicht vor etwa 13,8 Milliarden Jahren mit dem Urknall. Alles, was es gibt, alles woraus Planeten bestehen, Sterne bestehen, alles woraus Ihr besteht, war in einem kleinen winzigen Punkt, einer sogenannten Singularität, zusammengequetscht. Zumindest die Grundlage dafür. Und aus ominösen Gründen begann diese Singularität plötzlich zu expandieren. Das Universum hat sich im Urknall selbst geboren. Am Anfang war es so klein wie eine Erbse, dann wie ein Keks und dann immer größer und größer.

Dunkle Energie treibt Expansion des Universums voran

Seitdem expandiert das Universum. Ob sich diese Expansion irgendwann mal abschwächen wird? Immerhin ist der Urknall fast 14 Milliarden Jahre her. Aber tatsächlich beschleunigt sich die Expansion des Universums – die Galaxien bewegen sich mit einer immer schnelleren Geschwindigkeit voneinander weg. Das ist unerklärlich und deswegen haben die Astrophysiker das Konzept der Dunklen Energie entwickelt. Es muss eine rätselhafte Kraft geben, die die Beschleunigung der Expansion antreibt. Was Dunkle Energie aber ist, weiß kein Mensch. Aber es muss sie in der ein oder anderen Form geben, ansonsten würde das Universum nicht immer schneller wachsen. 

Was bezeichnet die Hubble-Konstante?

So weit, so gut, das ist ganz grob zusammengefasst der aktuelle Stand der Kosmologie (in absoluter Kurzform natürlich). Der Vater der Kosmologie ist Edwin Hubble, der berühmteste amerikanische Astronom, der im frühen 20. Jahrhundert entdeckte, dass sich die meisten Galaxien voneinander weg bewegen. Nach ihm sind zwei Dinge benannt, die für diesen Beitrag wichtig sind: Die Hubble-Konstante und das Hubble-Weltraumteleskop. Die Hubble-Konstante bezeichnet die aktuelle Rate der Expansion des Universums. Da die Beschleunigung der Expansion sich verändert, braucht man diese Konstante und kann sie nicht einfach mit einer Zahl angeben wie z.B. 80 km/h oder so.

Edwin Hubble am Teleskop

Das Hubble-Teleskop war lange das beste Weltraumteleskop, das die Menschheit hatte – und es ist immer noch im Einsatz, obwohl jetzt bald das neue James-Webb-Teleskop seinen normalen Betrieb aufnehmen wird. Durch das Hubble-Teleskop haben wir viel über die Expansionsrate des Kosmos und die Position einzelner Galaxien gelernt, so dass man die Hubble-Konstante immer weiter präzisieren konnte. 

Auswertung der Hubble-Daten zeigt: Da stimmt was nicht

Aber jetzt kommt’s: Ein Forscherteam hat in mühsamer Arbeit nun Daten des Hubble-Teleskops ausgewertet, die seit über 30 Jahren erhoben wurden. Und diese Auswertung von Daten hat ergeben: Alles, was wir über die Expansion des Kosmos zu wissen glauben, passt nicht zusammen. Irgendwas kann nicht stimmen oder wir haben ein essentielles Detail noch nicht gefunden. Zwischen der Expansionsrate des Universums aktuell und der Expansionsrate des frühen Universums kurz nach dem Urknall gibt es eine Diskrepanz, die sich weder mit Theorien über die Dunkle Energie noch mit dem aktuellen Wissen über die Hubble-Konstante erklären lassen. Keine unserer vorhandenen kosmologischen Theorien können ansatzweise erklären, weshalb die Daten des Hubble-Teleskops diesen Unterschied zwischen den Expansionsgeschwindigkeiten des Universums in seinen jeweiligen Entwicklungsstufen ausgespuckt haben. 

Die von Hubble untersuchten Galaxien

Bei solchen Erkenntnissen, die das Verständnis der Astrophysik grundsätzlich durcheinander bringen, fragt man normalerweise immer zuerst: Das war doch bestimmt ein Messfehler, oder?! Aber in diesem Fall lässt sich das ausschließen. Angesichts der großen Hubble-Stichprobe besteht nur eine Chance von eins zu einer Million, dass sich die Astronomen aufgrund eines Messfehlers irren. Das Forscherteam hat über 40 Supernova-Explosionen ausgewertet, die über den gesamten Zeitraum von Hubbles Mission stattgefunden haben. Supernovae, die Explosion von Sternen am Ende ihrer Lebensspanne, eignen sich perfekt für Entfernungsbestimmungen im Weltraum. Der Leiter des Forschungsteams, Nobelpreisträger Adam Riess vom Space Telescope Science Institute sagt: “Wir haben eine vollständige Stichprobe aller Supernovae, die das Hubble-Teleskop in den letzten Jahrzehnten gesehen hat. Wir erhalten die präziseste Messung der Expansionsrate des Universums durch den Goldstandard der Teleskope.”

Ein Buch von Astro-Comics mit dem Namen Astro-Comics erklärt das Sonnensystem

Wollt ihr mehr über den Weltraum erfahren?

Dann holt euch das erste Buch von Astro Tim: Astro Comics erklärt das Sonnensystem

Unbekannter Faktor sorgt für Diskrepanz

Wie hoch ist die Diskrepanz genau? Den Ergebnissen von Professor Riess zufolge liegen die Hubble-Messungen für die Expansion des Kosmos im nahen Bereich bei etwa 73 Kilometern pro Megaparsec. Berücksichtigt man jedoch die Beobachtungen des tiefen, frühen Universums, verlangsamt sich die Rate auf etwa 67,5 Kilometer pro Megaparsec. Megaparsec sind eine astronomische Längeneinheit für wirklich wirklich große Maßstäbe. Jetzt ist natürlich die Frage, wie diese erhebliche Diskrepanz zu erklären ist? Und warum selbst diese größte Auswertung von Hubble-Daten hinsichtlich der Expansionsrate keine Klarheit bezüglich der Hubble-Konstante gebracht hat. 

Im Prinzip bedeutet das, dass es einen gigantischen kosmologischen Faktor gibt, den wir einfach nicht kennen. Irgendein Faktor der Physik, der für diese extrem unterschiedlichen Ausbreitungsraten im lokalen und im frühen Universum sorgt, ist uns noch absolut unbekannt. Interessanterweise sieht Professor Riess das ganze locker. Er sagt: “Es ist am besten, die Expansionsrate nicht nach ihrem genauen Wert hinsichtlich der Zeit zu betrachten, sondern nach ihren Auswirkungen. Es ist mir egal, wie hoch der Expansionswert genau ist, aber ich möchte ihn nutzen, um etwas über das Universum zu lernen.”

Bringt James Webb die Auflösung?

Das neue James-Webb-Teleskop wird den Kosmos in noch nie dagewesener Genauigkeit untersuchen können. Es wird wie Hubble Entfernungsmessungen anhand von Supernovae und sogenannten Cepheiden vornehmen. Das sind Sterne, bei denen es extremst periodische Schwankungen in ihrer Helligkeit gibt. Anhand der Beziehung zwischen Leuchtkraft und Periodendauer dieser Sterne kann man sie zur Entfernungsmessung verwenden. James Webb wird uns vermutlich eine Antwort auf das Hubble-Paradoxon liefern und damit unser Verständnis des Kosmos revolutionieren. 

Cepheiden Periode

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz