Laser ist schneller als Lichtgeschwindigkeit – ist das möglich?

Laser sind schneller als Lichtgeschwindigkeit

Forschern ist es gelungen, etwas zu erschaffen, das schneller ist als Lichtgeschwindigkeit – klingt unglaublich ist aber wahr.

Selbst in diesem mysteriösen und unbegreifbaren Kosmos gibt es einige Regeln, an die sich alle halten müssen. Eine dieser Naturkonstanten ist die maximale Geschwindigkeit c, auch bekannt als Lichtgeschwindigkeit. Albert Einstein stellte in seiner Relativitätstheorie fest, dass sich die Geschwindigkeit von Licht, das sich durch ein Vakuum bewegt, nie verändert. Mit gerundet 300.000 Kilometern pro Sekunde bewegt sich Licht im Vakuum mit der höchsten Geschwindigkeit, die in unserem Universum denkbar ist.

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Lichtgeschwindigkeit ist aber keine akkurate Bezeichnung. Erstens erreicht nicht nur das Licht diese maximale Geschwindigkeit, sondern auch alle anderen elektromagnetischen Wellen. Zweitens kann das Licht auch langsamer sein, je nachdem durch welches Medium es sich bewegt. Im Wasser reduziert sich die Geschwindigkeit auf knapp 231.000 Kilometer pro Sekunde. Lichtgeschwindigkeit kann also variieren, nur im Vakuum erreicht es die maximale Geschwindigkeit c. 

Foto von unter Wasser
Unter Wasser: Reduzierung der Lichtgeschwindigkeit

Das Konzept der Raumzeit

Stellt euch mal ein Raumschiff vor, das durch das All düst. Das Raumschiff bewegt sich durch Raum und Zeit. Je schneller es sich durch den Raum bewegt, desto langsamer vergeht die Zeit. Das ergibt sich aus dem Konzept der Raumzeit, wonach Raum und Zeit untrennbar miteinander verbunden sind. 

Jetzt stellen wir uns ein Photon vor, ein Lichtteilchen. Das bewegt sich schneller als ein Raumschiff, nämlich im Vakuum mit der maximalen Geschwindigkeit c. Diese Geschwindigkeit hat einen so massiven Einfluss auf die Raumzeit, dass die Zeitkomponente komplett entfällt. Die Zeit wird so sehr verlangsamt, dass sie stillsteht – für das Licht existiert keine Zeit. Und das stellt die maximale Ausreizung der Beziehung zwischen Raum und Zeit dar. Mehr als das Wegfallen der Zeitkomponente geht nicht und deswegen ist an diesem Geschwindigkeitspunkt die maximale Geschwindigkeit erreicht. 

Lichtgeschwindigkeit hört nicht auf Naturkonstanten

Das sind also Naturkonstanten, die sich nicht brechen lassen. Aber es gibt Eigenschaften des Lichts, die nicht nach denselben Regeln spielen. Es ist Physikern am Lawrence Livermore National Laboratory in den USA gelungen, Wellen, die aus Gruppen von Photonen bestehen, auf Überlichtgeschwindigkeit zu beschleunigen. Die Forscher erzeugten zunächst ein Wasserstoff-Helium-Plasma, also ein ultra erhitztes Gemisch, in dem die Elektronen aus den Atomen herausgerissen werden und so ein ionisiertes Gas bilden. 

Laser am Lawrence Livermore National Laboratory
Schneller als das Licht: Laser am Lawrence Livermore National Laboratory

Um das Plasma zu erzeugen, beschossen sie das Wasserstoff-Helium-Gemisch mit einem polarisierten Laserstrahl. Dann richteten sie einen zweiten Laserstrahl auf das Plasma. Genau dort, wo sich die Wege der beiden Strahlen kreuzten, verlangsamte sich der zweite Laserpuls als Reaktion auf eine Änderung des Brechungsindex des Plasmas. Also anders gesagt: Die Verlangsamung wurde durch Wechselwirkungen zwischen den beiden Lasern und dem Plasma verursacht. 

Laserpuls schneller als Lichtgeschwindigkeit

Die Laserpulse besitzen eine horizontale und vertikale Komponente und die Physiker haben die Zeitdifferenz zwischen diesen beiden Komponenten des Laserstrahls gemessen. Indem man die genauen Justierungen der beiden Laserstrahlen leicht verändert, kann man die Zeitdifferenz zwischen der horizontalten und der vertikalen Komponente des einen Laserstrahls anpassen. Die Forscher spielten ein wenig mit der Justierung der Laserimpulse herum und sie fanden heraus, dass sie so die Geschwindigkeit des einen Lasers von 0,995 c, also fast Lichtgeschwindigkeit, um minus 0,34 c verringern oder um bis zu 0,12 c erhöhen konnten. Damit erhalten wir einen Wert höher als 1 c. Höher als die maximale Geschwindigkeit c, höher als die Lichtgeschwindigkeit. Die Spitze des Puls bewegt sich schneller als c. 

Darstellung verschiedener Lichtimpulse
Darstellung verschiedener Lichtimpulse, Quelle: Miles Padgett University of Glasgow

Aber: Wir reden hier über die Geschwindigkeit von Lichtpulsen, also ganzen Gruppen von Photonen. Und obwohl es die meisten Leute nicht wissen, kann sich die Geschwindigkeit, mit der sich Lichtpulse durch ein Material bewegen, stark von der Geschwindigkeit c unterscheiden, mit der sich Licht im Vakuum bewegt. Diese Geschwindigkeit der Lichtpulse, die so genannte Gruppengeschwindigkeit, kann sowohl höher als auch niedriger als c sein und hat starken Einfluss darauf, wie sich die Form eines Lichtpulses ausbreitet und verzerrt, während er sich durch ein bestimmtes Material bewegt. 

Gruppengeschwindigkeit für Raumschiffe anwendbar?

Einfacher gesagt: Die einzelnen Photonen bewegen sich immer noch in ihrem gewohnten Tempo, aber ihr kollektiver Tanz beschleunigt sich. Ihr kennt das bestimmt aus dem Club, wenn man alleine auf der Tanzfläche steht, bewegt man sich eher verhalten. Aber wenn dann alle anderen auch zu tanzen beginnen, der DJ die Backstreet Boys anwirft und der zehnte Gin Tonic intus ist, dann geht die Post ab.

T-Shirt Astro-Tim: Was genau hast du nicht verstanden?

Nichts verstanden? Macht nichts!

Hol dir jetzt dein nerdiges T-Shirt nach Hause!

Klingt ja alles super, also wann fangen wir an Raumschiffe zu bauen, die sich diese Gruppengeschwindigkeit zunutze machen und uns zu den Sternen bringen? Das wird vermutlich etwas knifflig, denn für komplexere Vorgänge wie Antriebe oder Informationsübertragung ist die faktische Geschwindigkeit der Photonen relevant und nicht die Gruppengeschwindigkeit. Und wie wir jetzt schon ausgiebig gelernt haben, können die einzelnen Photonen die maximale Geschwindigkeit c nicht knacken. 

Fortschritt für die Lasertechnologie

So spektakulär das Experiment am Lawrence Livermore National Laboratory auch ist, es wird uns wohl erst mal nicht den Überlichtgeschwindigkeitsantrieb bringen. Aber das bedeutet nicht, dass wir damit nicht andere spektakuläre technologische Durchbrüche erzielen könnten. Vor allem für die Lasertechnologie sind diese Durchbrüche interessant. Die Verwendung von Plasmaströmen zur Verstärkung oder Veränderung der Lichteigenschaften erlauben es uns, fortschrittliche High-Tech-Laser zu bauen und die wiederum sind für eine ganze Reihe an Zukunftstechnologien maßgeblich. 

Clément Goyon, Leiter des Experiments, sagt: “Langsames und schnelles Licht ist nur die Spitze des Eisbergs. Die Fähigkeit, Plasmaeigenschaften vorherzusagen und zu unserem Vorteil zu nutzen, ist entscheidend für Hochenergie-Laserexperimente in der Physik der hohen Energiedichte und der Trägheitsfusion.” 

Solche Laser bräuchten wir beispielsweise für das Hochfahren von Teilchenbeschleunigern oder zur Verbesserung von Kernfusionsanlagen. Das ist eine Technologie, die uns potentiell irgendwann mit fast unendlich Energie versorgen könnte, was wiederum auch entscheidend für Antriebe in der Raumfahrt ist. Über Umwege bescheren uns diese Plasma-Überlichtgeschwindigkeits-Experimente also vielleicht doch noch eine Art Hyperantrieb wie bei Star Wars.

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Immer weniger Sterne: Stirbt der Kosmos?

Darstellung des Kosmos

Astrophysiker sind angesichts neuer Daten absolut ratlos und sagen: Das Universum stirbt. Müssen wir unsere Annahmen über den Kosmos wieder einmal komplett über den Haufen werfen? 

Direkt mal zu Beginn eine unfassbare Zahl: 4×1048. Ausgesprochen wird das wie folgt: Vier Billion Billion Billion Billion Billion Billion Billion. Hierbei handelt es sich um die Anzahl aller Photonen im gesamten Universum. Photonen sind Teilchen des Lichts. Diese Gesamtanzahl der kosmischen Photonen gibt Auskunft darüber, wie viel Licht die Sterne des Universums bisher abgestrahlt haben. Die Zahl klingt gigantisch. Aber bei der immensen Größe des Universums bietet all dieses Licht ungefähr so viel Erhellung wie eine 60-Watt-Glühbirne aus vier Kilometern Entfernung. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Seit 2008 untersucht das Fermi Gamma-ray-Weltraumteleskop den Weltraum im Gamma-Bereich. In diesem Bereich können wir besonders heftige, energiereiche kosmische Prozesse wie Supernovae oder Kollisionen von Sternen beobachten. Anhand der über die Jahre gesammelten Daten des Fermi-Weltraumteleskops konnte ein Team von Astronomen der Clemson University in den USA die Anzahl aller Photonen des gesamten Universums ausrechnen. Das funktionierte folgendermaßen: Die Astronomen schätzten zunächst die Größe des sichtbaren Universums. Ein mehrdimensionaler Raum mit einem Durchmesser von vielen Milliarden Lichtjahren, der mindestens eine bis zwei Billionen Galaxien und eine Billion Sterne enthält. Die meisten dieser Sterne und Galaxien sind viel zu weit entfernt und zu schwach, um sie mit den besten Teleskopen wie James Webb detailliert analysieren zu können. Aber das spielt keine Rolle, denn die gesamte Energie, die jemals von allen Sternen des Universums abgestrahlt wurde, ist immer noch da und füllt den Kosmos mit einer Art Nebel, einem Meer von Photonen, das als extragalaktisches Hintergrundlicht bekannt ist. Wir schwimmen also permanent in einem Ozean aus all dem Sternenlicht, das es jemals gab.

Weltraumteleskop im Kosmos
Weltraumteleskope berechnen die Sternendichte

Das extragalaktische Hintergrundlicht

Und dieses extragalaktische Hintergrundlicht hat es in sich – im wahrsten Sinne des Wortes. Denn in diesem diffusen Lichtabdruck ist die gesamte Geschichte der Geburt und des Todes von Sternen im Universum geschrieben, von seinen Anfängen vor 13,8 Milliarden Jahren bis heute. So ein bisschen wie ein uralter Baum, in dessen Maserung Ihr die Einflüsse seit Anbeginn der Zeit ablesen können. Deshalb war das extragalaktische Hintergrundlicht das perfekte Beobachtungsobjekt für die Astronomen der Clemson University und das Fermi Teleskop. Um noch genauere Informationen über die Entwicklung der gesamtkosmischen Photonen zu erhalten, haben sie auch den Einfluss sogenannter Blazare untersucht. 

Was ist ein Blazar? 

In einigen Galaxien geht in ihrem Zentrum wirklich die Post ab. Dort befinden sich supermassive Schwarze Löcher, die in einer gewaltigen Akkretionsscheibe Material herumwirbeln. Es entsteht so viel Energie, das diese in heftigen Ausbrüchen fortgeschleudert wird. Solche hyperaktiven Schwarzen Löcher, also solche aktiven Galaxienkerne bezeichnet man als Quasar. Und es gibt Quasare, deren Energieausbrüche genau in Richtung Erde zeigen. Solche Quasare, deren Energieausbrüche in Richtung Erde erfolgen, nennt man Blazare. Und die Energieausbrüche der Blazare hinterlassen deutliche Spuren im extragalaktischen Hintergrundlicht. 

Um zu unserem Baum-Beispiel zurückzukehren – das ist so, als könnte man überall im Querschnitt des Baums deutliche Macken sehen, die von heftigen singulären Ereignissen herrühren. Vaidehi Paliya, Leiterin der Studie, sagt: “Mit Hilfe von Blazaren haben wir das gesamte Sternenlicht in verschiedenen Zeiträumen gemessen. Wir haben das gesamte Sternenlicht jeder Epoche gemessen – vor 1 Milliarde Jahren, vor 2 Milliarden Jahren, vor 6 Milliarden Jahren und so weiter – bis zurück zur ersten Sternentstehung.“ Durch die Analyse des extragalaktischen Hintergrundlichts und der Stärke der Blazarausbrüche über die Jahrmilliarden hinweg, konten die Astronomen ein sehr akkurates Bild der Photonenzahl und damit der Sternentstehung im Kosmos über die komplette Zeitspanne seiner Existenz hinweg erstellen. Anders gesagt: Die Forscher wissen nun, wann wie viele Sterne im Kosmos entstanden sind und wie viel Licht dabei jeweils abgestrahlt wurde. Und jetzt die deprimierende Nachricht: Der Kosmos stirbt. 

Darstellung eines Sternentstehungsnebels
Im Nebel: Hier entstehen zahlreiche Sterne

Immer weniger Sterne: Der Kosmos stirbt

Die Astronomen konnten aus den Ergebnissen ablesen, dass die Sternentstehungsrate auf dem absteigenden Ast ist. Die Rate von neu entstehenden Sternen erreichte schon vor Milliarden Jahren ihren Höhepunkt und seitdem werden im gesamten Kosmos immer weniger Sterne geboren. In der Milchstraße entstehen pro Jahr nur sieben neue Sterne. Warum die Sternenentstehung so sehr zurückgeht und das Universum von seinen aktiven jungen Jahren in den Herbst seines Lebens übergegangen ist, ist für die Forscher ein großes Rätsel. 

T-Shirt Astro-Tim: Was genau hast du nicht verstanden?

Nichts verstanden? Macht nicht’s!

Hol dir jetzt dieses nerdige T-Shirt nach Hause!

Natürlich gab es vor Milliarden Jahren noch viel mehr kosmisches Material, vor allem gigantische Wasserstoffwolken, aus denen neue Baby-Sterne entstehen konnten. Und jetzt, wo es schon sehr viele Sterne gibt, mangelt es einfach an Produktionsmaterial – aber das alleine reicht nicht als Erklärung für die so überraschend niedrige Sternentstehungsrate. 

Weniger Sterne, weniger Leben

Die Metapher mit dem “Sterben” des Universums ist tatsächlich akkurat, denn der Prozess der Sternentstehung ist letztlich der Prozess, dem wir unser Leben verdanken. Die Planetenforscherin Dr. Ashley King sagt: “Fast alle Elemente im menschlichen Körper sind in einem Stern entstanden, und viele von ihnen haben mehrere Supernovae überstanden. Eine ganze Reihe verschiedener Sterne haben die Elemente beigesteuert, die wir in unserem eigenen Sonnensystem, auf unserem Planeten und in unserem Körper vorfinden.” Es klingt zwar kitschig, aber im Grunde bestehen wir alle aus Sternenstaub. 

Darstellung der Elemente im menschlichen Körper
Wir sind aus Sternenstaub: Elemente im menschlichen Körper

Nur unter den extremen Bedingungen innerhalb von Sternen konnten die meisten Elemente überhaupt erst entstehen. Sterne sind also die Schmieden für die Elemente des Lebens – und nicht zuletzt spenden sie natürlich für Leben essentielles Licht und Wärme. Man kann also sagen: Weniger neue Sterne bedeutet weniger Quellen für neues Leben.

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Tscherenkow-Strahlung: Schneller als das Licht

Darstellung von Lichtgeschwindigkeit und Tscherenkow-Strahlung

Schneller als Lichtgeschwindigkeit geht nicht? Oh doch. Forscher haben herausgefunden, dass unsere grundlegenden Annahmen über das Universum und die Lichtgeschwindigkeit fehlerhaft sein könnten. 

Lichtgeschwindigkeit ist das schnellste, was es gibt. Diesen Satz hört man oft, aber er ist unvollständig. Er sagt nichts darüber aus, worin sich das Licht bewegt. Gemeint ist mit diesem Satz die Geschwindigkeit des Lichts im Vakuum. Und die beträgt 299.792 Kilometer pro Sekunde. Das bezeichnet man als maximale Geschwindigkeit c. Laut Albert Einsteins Relativitätstheorie ist das das Maximum, das erreicht werden kann. Nicht nur von Licht, sondern auch von den anderen elektromagnetischen Wellen.

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Lichtgeschwindigkeit hängt davon ab, worin sich Licht bewegt. Wenn es sich nicht im Vakuum bewegt, wird es langsamer. Im Wasser etwa legt das Licht nur noch 230.769 Kilometer pro Sekunde zurück. Es ist logisch, dass das Licht im Wasser langsamer ist, denn die Lichtteilchen, die sogenannten Photonen, müssen sich ihren Weg durch die Wassermoleküle erkämpfen. Das kostet Zeit. Genau so wie Ihr langsamer im Schwimmbecken seid, als wenn Ihr am Rand des Beckens entlang laufen würdet. Natürlich ist das Licht trotzdem noch immens schnell und natürlich können wir auch immer noch korrekterweise von Lichtgeschwindigkeit sprechen, nur eben nicht von der maximalen Geschwindigkeit c. 

Die Tscherenkow-Strahlung im Kühlwasser eines Reaktors

Wenn Licht durch Vanillepudding fliegt

Und jetzt kommt ein Effekt ins Spiel, bei dem die Lichtteilchen überholt werden können, bei dem etwas schneller wird als die Lichtgeschwindigkeit. Geladene Teilchen können schneller fliegen als das Licht, wenn das Licht durch ein Medium abgebremst wird. Also zum Beispiel durch Wasser. Oder irgendwas anderes wie Vanillepudding. Diesen Effekt nennt man Tscherenkow-Strahlung oder Tscherenkow-Licht. Beobachten kann man das beispielsweise im wassergefüllten Reaktorgefäß von Atomkraftwerken. Die durch die Strahlung der Brennelemente ausgesandte Elektronen, also negativ geladene, subatomare Teilchen, rasen dort so schnell durch das Reaktorwasser, dass das von angeregten Atomen abgegebene Licht nicht hinterherkommt. Es entsteht eine Art subatomare Kielwelle – quasi ein Überschallkegel aus Licht, der sich in Kernkraftwerken als eine Art bläuliches Schimmern äußert. 

Noch mal zurück zum Schwimmbecken. Stellt euch vor, Ihr zieht eure Bahnen im Wasser, durch eure Schwimmbewegung entstehen Wellen. Wellenberge und Wellentäler. Aber durch jede weitere Schwimmbewegungen gleicht ihr die vorherigen Wellen wieder aus. Insgesamt neutralisieren sich die Wellen, die Ihr durch eure Schwimmbewegungen erzeugt, da jede Welle die Welle von davor ausgleicht. Sie überlagern sich. Ihr seid aber sicherlich sehr gute Schwimmer und steigt deshalb noch mal ins Becken und zieht jetzt ein paar Bahnen mit Lichtgeschwindigkeit. Eure Schwimmgeschwindigkeit ist nun viel höher als die Geschwindigkeit der Wellen, denn die entstehen logischerweise nicht mit Lichtgeschwindigkeit. Die Wellen können sich nicht mehr überlagern, denn Ihr seid so schnell unterwegs, das es immer ein paar Wellen gibt, die vor allen anderen sind. Auf diese Art und Weise hättet Ihr im Schwimmbad eine Tscherenkow-Welle erzeugt. 

Beim Schwimmen werden Wellen erzeugt

Wie entsteht Tscherenkow-Strahlung?

Ganz einfach formuliert könnte man sagen, dass die Tscherenkow-Strahlung entsteht, wenn subatomare Teilchen durch ein Medium rasen und dabei schneller sind als das sich im Medium ausbreitende Licht. Die dabei entstehende subatomare Kielwelle ist dann schneller als Lichtgeschwindigkeit in diesem Medium. Einige von euch denken jetzt vielleicht, dass das ja geschummelt ist. Denn die Tscherenkow-Strahlung ist nicht schneller als das, was man gemeinhin mit dem Wort Lichtgeschwindigkeit meint, also nicht schneller als die maximale Geschwindigkeit c. Sie ist nur schneller als Lichtgeschwindigkeit außerhalb eines Vakuums. Stimmt, aber es ist trotzdem interessant, sich mal vor Augen zu führen, dass Lichtgeschwindigkeit nicht gleich Lichtgeschwindigkeit ist. 

Nichts verstanden? Was genau nicht?

Die Antwort lässt sich aus dem Tafelbild eigentlich leicht herleiten. Hol dir jetzt das nerdige T-Shirt!

Und jetzt kommt noch ein Clou. Könnte man das Prinzip der Tscherenkow-Strahlung nicht vielleicht doch auf die Lichtgeschwindigkeit im Vakuum anwenden? Könnten nicht auch außerhalb von Medien wie Wasser und Vanillepudding strahlende Kielwellen entstehen? Genau das wollten Forscher aus Schottland von der University of Strathclyde in Glasgow herausfinden. Und ihre Überlegungen basieren – wie könnte es anders sein – auf der mysteriösen Quantenphysik, dem Teil der Physik, der sich mit der verrückten Welt der kleinsten Teilchen beschäftigt. In ihren Berechnungen ermittelten die Forscher, wie schnell ein Teilchen sein müsste und durch welche Feldstärken es fliegen müsste, damit im Vakuum Tscherenkow-Licht in Form von Gammastrahlung frei wird. Und tatsächlich: Sie kamen zu dem Ergebnis, dass Quantenfluktuationsteilchen Licht aussbremsen können, wenn sie einem starken Magnetfeld ausgesetzt werden. “Das impliziert, dass energiereiche Partikel im All auch Tscherenkow-Strahlung freisetzen können, wenn sie durch starke elektromagnetische Felder fliegen”, so die Forscher. 

Millisekunden-Pulsare erzeugen starkes Magnetfeld

Aber wo könnte man eine solch extreme Umgebung finden, in der ein so starkes Magnetfeld vorhanden ist? Die Antwort: Im Umfeld der sogenannten Millisekunden-Pulsare. Das sind gestorbene Sterne, die nun mit einer hohen Geschwindigkeit um sich selbst rotieren und dabei pulshafte Strahlungsausbrüche abgeben, daher der Name Pulsar. Millisekunden-Pulsare rotieren in nur rund zwanzig Millisekunden um sich selbst. Einige dieser Millisekunden-Pulsare konnte man aufspüren, was gar nicht so einfach ist, denn die Objekte sind sehr klein, da die Restmasse des Sterns in ihnen sehr stark verdichtet ist. Wir reden hier von Größen von nur 15 bis 20 Kilometern, also für kosmische Objekte winzig. Aber diese Millisekunden-Pulsare verraten sich durch Gammastrahlung. Und hier fügen sich nun die Ergebnisse der schottischen Forscher perfekt zusammen, denn ein Teil dieser verräterischen Strahlung könnte Tscherenkow-Strahlung sein. Die Forscher schreiben: “Die Astrophysik liefert uns damit Umgebungen, in denen der Vakuum-Tscherenkow-Effekt beobachtet werden könnte. Für Protonen der energiereichsten kosmischen Strahlung wird dort die hochenergetische Abstrahlung vollständig vom Tscherenkow-Prozess dominiert.”

Gibt es etwas, das schneller als das Licht ist? Ja, die Tscherenkow-Strahlung. Mehr dazu hier.
Künstlerische Darstellung eines Pulsars

Das würde perfekt passen, denn in der Vergangenheit beobachteten Astronomen im Herzen vieler Galaxien, auch innerhalb unserer eigenen Milchstraße, ein mysteriöses Gammaglühen. Eine Strahlung im Gammabereich, deren Quelle völlig unbekannt ist. Einige Astronomen versuchen dieses Gammaglühen mit Effekten der Dunklen Materie zu erklären – das Problem ist nur, dass niemand so richtig weiß, was Dunkle Materie eigentlich ist. Es handelt sich bislang um ein komplett theoretisches Konstrukt. Die Tscherenkow-Strahlung im Vakuum, ausgelöst durch Millisekunde-Pulsare könnte eine realistischere Erklärung für das Gammaglühen sein. Aber – und leider gibt es immer ein aber – die Vakuum-Tscherenkow-Theorie ist eben auch nur das. Eine Theorie. Es fehlt mangels besserer Erforschungsmöglichkeiten dieser extremen Umgebungen um die Pulsare herum noch der letztliche Beweis. Es ist aber dennoch eine plausible Idee, denn sie würde nicht gegen die Relativitätstheorie verstoßen. Auch die Vakuum-Tscherenkow-Strahlung würde keine Geschwindigkeiten jenseits der maximalen Geschwindigkeit c erzeugen. Denn durch die Quantenfluktuation im starken Pulsar-Magnetfeld werden die Lichtteilchen ja verlangsamt und dadurch kann dann wiederum eine Tscherenkow-Kielwelle entstehen, die schneller als das verlangsamte Licht ist, aber nicht schneller als die maximale Geschwindigkeit c. Das Forscherteam schreibt: “Unsere theoretische Vorhersage ist sehr spannend, denn sie könnte Antworten auf einige grundlegende Fragen liefern – darunter auch nach dem Ursprung des Gammaglühens im Herzen von Galaxien. Gleichzeitig bietet sie eine neue Möglichkeit, fundamentale Theorien an ihre Grenzen zu bringen und so zu testen.”

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Ist die Schwerkraft schneller als das Licht? 

Das Verhältnis von Schwerkraft und Licht

Nichts ist schneller als das Licht. Oder doch? Könnte es sein, dass die Schwerkraft schneller als das Licht ist? Und wir alle einsteinschen Naturgesetze über den Haufen werfen müssen? 

Wer genauer über die Schwerkraft nachdenkt, wird schnell verwirrt. Was ist Schwerkraft überhaupt? Der Nachweis eines Schwerkraftteilchens ist nach wie vor nicht gelungen und die Erklärung der Ursache dieser Kraft ist eines der größten Rätsel der Physik. Aber unabhängig davon, wie und ob die Gravitation quantenphysikalisch zu erklären ist, ist sie jedenfalls da. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Jeder beeinflusst die Raumzeit

Einer der verwirrendsten Aspekte der Gravitation ist, dass sie sofort, also instantan zu wirken scheint. Oder reist die Schwerkraft der Sonne, die die Erde festhält, etwa auch mit der Geschwindigkeit des Lichts zu uns? Um dieses Rätsel zu lösen, müssen wir etwas tiefer in die einsteinsche Physik eintauchen. Albert Einstein fand in seiner allgemeinen Relativitätstheorie heraus, dass Raum und Zeit untrennbar zusammengehören. Gemeinsam bilden sie die Raumzeit. Und Schwerkraft beeinflusst diese Raumzeit. Je schwerer ein Objekt ist, desto mehr wird die Raumzeit, die wir uns der Einfachheit wie eine Art Gitternetz vorstellen können, gekrümmt. Auch Ihr beeinflusst gerade durch euer Gewicht die Raumzeit.

Diagramm der Raumzeit

Eine weitere wichtige Erkenntnis Einsteins war, dass es eine maximale Geschwindigkeit im Kosmos gibt, diese bezeichnet man als Geschwindigkeit C. Die Relativitätstheorie besagt, dass sich die Geschwindigkeit von Licht, das sich durch ein Vakuum bewegt, nie verändert. Mit gerundet 300.000 Kilometern pro Sekunde hat Licht die höchste erreichbare Geschwindigkeit im Universum. Und das gilt übrigens nicht nur für Licht, auch wenn man landläufig immer von Lichtgeschwindigkeit spricht, sondern auch für alle anderen elektromagnetischen Wellen. 

Buch Können wir auf Gravitationswellen surfen

Wie wäre es wohl, wenn man auf Gravitationswellen surfen könnte?

Findet es selbst heraus – mit dem neuen Buch von Astro-Tim!

Warum nichts schneller als das Licht ist

Woraus ergibt sich diese maximale Geschwindigkeit? Ein Raumschiff, das durch den Kosmos fliegt, bewegt sich durch Raum und Zeit. Je schneller es sich durch den Raum bewegt, desto langsamer vergeht die Zeit. Ihr erinnert euch an das Konzept der Raumzeit. Jetzt stellen wir uns ein Photon vor, ein Lichtteilchen. Das bewegt sich natürlich wesentlich schneller als ein Raumschiff, nämlich mit der maximalen Geschwindigkeit C. Diese Geschwindigkeit hat einen derart massiven Einfluss auf die Raumzeit, dass die Zeitkomponente komplett entfällt. Die Zeit wird so sehr verlangsamt, dass sie stillsteht – für das Licht existiert so gesehen keine Zeit. Und das stellt die maximale Ausreizung der Beziehung zwischen Raum und Zeit dar. Mehr als das Wegfallen der Zeitkomponente geht nicht und deswegen ist an diesem Geschwindigkeitspunkt die maximale Geschwindigkeit erreicht.

Das Licht von der Sonne braucht zu uns 8 Minuten – die Schwerkraft auch?

Warum ausgerechnet bei dieser Geschwindigkeit? Im Prinzip ist das die philosophische Frage, weshalb die Naturgesetze genau so sind wie sie sind. Es ist der Programmiercode unserer Realität. Wie die Gesetze der Matrix, die uns vorgeschrieben sind. Aber zurück zur Schwerkraft. Wie verhält sich die Gravitation in diesem Zusammenspiel von Geschwindigkeit, Raum und Zeit? 

Isaac Newton: Schwerkraft existiert ohne Zeit

Isaac Newton, der Entdecker der Schwerkraft, dem der Legende nach ein Apfel auf den Kopf gefallen sein soll, glaubte, dass sich diese Kraftwirkung ganz ohne zeitliche Verzögerung ausbreitet. Albert Einstein sagte in seiner Relativitätstheorie hingegen voraus, dass Gravitation sich ebenfalls nur mit Lichtgeschwindigkeit bewegen könne. Was stimmt denn nun? Wirkt denn nicht die Schwerkraft der Sonne sofort auf uns? Würde die Sonne nun verschwinden, wäre ihre Schwerkraft dann sofort weg oder würde es rund acht Minuten dauern, bis wir es bemerken? Das ist die Zeit, die auch das Licht von der Sonne bis zur Erde benötigt. 

Der Entdecker der Schwerkraft: Isaac Newton

Ein Forscherteam der University of Columbia hat vor Jahren ein cleveres Experiment gestartet, um diese Frage ein für alle mal zu klären und dabei half ihnen das Planetenschwergewicht unseres Sonnensystems, der Jupiter. Der Jupiter ist doppelt so schwer wie alle anderen Planeten des Sonnensystems zusammen, er bringt ordentlich was auf die Waage. Und so sah das Experiment der Forscher aus: Während der Jupiter durchs Blickfeld zog, beobachteten die Forscher mit mehreren kombinierten Teleskopen das Licht eines Quasars, also dem aktiven, energiereichen Zentrum einer weit entfernten Galaxie. Die von Jupiter ausgehende Gravitationskraft lenkte das Licht dieses Quasars minimal ab. Sie nutzten den Jupiter also als eine Gravitationslinse. Daraus konnten die Wissenschaftler die Ausbreitungsgeschwindigkeit der Schwerkraft berechnen. Eine ebenso einfache wie geniale Methode. 

Schwerkraft ist so schnell wie das Licht

Und das Ergebnis: Die Schwerkraft wirkt nicht instantan, sie breitet sich mit Lichtgeschwindigkeit aus. Dies wurde später auch durch die ersten Messungen von Gravitationswellen bestätigt. Gravitationswellen bezeichnen eine Art Vibrieren der Raumzeit, wenn zwei massereiche Objekte kollidieren. Wenn beispielsweise zwei Schwarze Löcher verschmelzen, beginnt das Gitternetz der Raumzeit zu wackeln und dieses Wackeln wurde erstmals im September 2015 von Wissenschaftlern der LIGO-Kollaboration erfolgreich nachgewiesen, nachdem Albert Einstein es schon knapp 100 Jahre zuvor vorausgesagt hatte. Gravitationswellen sind nur möglich, wenn die Schwerkraft sich mit Lichtgeschwindigkeit ausbreitet. Nach der newtonschen Physik, der bis dahin noch einige Wissenschaftler anhingen, wäre eine solche Welle nicht denkbar, denn die Schwerkraftwirkung würde die Erde ja sofort erreichen. 

Entstehung von Gravitationswellen

Also lange Rede, kurzer Sinn: Gravitation bewegt sich ebenso schnell wie das Licht, obwohl dies lange umstritten war, kann es nun als bewiesen betrachtet werden. Ein paar Folgefragen stellen sich da aber trotzdem noch, zum Beispiel: Wenn das so ist, weshalb kann dann Licht ein Schwarzes Loch nicht verlassen, Gravitation aber schon? Diese Vorstellung beruht auf einer falschen Vorstellung eines Schwarzen Lochs. Das Schwarze Loch sendet keine Gravitation aus seinem Inneren aus, sondern das Schwarze Loch ist selbst das Gravitationsfeld. Anders gesagt: Gravitation muss das Schwarze Loch gar nicht erst verlassen, das Schwarze Loch an sich ist ein eingefrorenes Gravitationsfeld. Gravitation kann statisch sein. Gravitationswellen sind so schnell wie Licht.

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz