Gliese710: Stern rast auf Sonnensystem zu

Gliese710 kollidiert mit Sonnensystem

Ein Stern namens Gliese710 ist auf Kollisionskurs mit unserem Sonnensystem. Er rast gerade in diesem Moment auf uns zu. Wissenschaftler befürchten, dass er einiges durcheinanderbringen könnte. Was da genau los ist und ob wir uns Sorgen machen müssen, erfahrt Ihr in diesem Beitrag.  

Einer unserer Nachbarsterne innerhalb der Milchstraße wird uns gefährlich nahekommen und potenziell sogar das Leben auf der Erde gefährden. Es klingt wie die Story eines schlechten Science-Fiction-Films, ist aber bittere Realität.  

Grundsätzlich haben Sterne eine feste Position innerhalb der Galaxis und mit dieser Position nehmen sie an der galaktischen Bewegung teil. Unser Sonnensystem etwa sitzt auf einem der äußeren Spiralarme der Galaxis und wir umkreisen gemeinsam mit den anderen Sternen das galaktische Zentrum. Eine solche Umdrehung dauert circa 225 Millionen Jahre und man bezeichnet dies als galaktisches Jahr.  

Gerade in diesem Moment rasen wir nicht nur mit der Erde um die Sonne, sondern auch mit dem Sonnensystem durch die Galaxis. Und genauso wandern die anderen Sterne auch durch die Milchstraße. Die stellaren Positionen sind aber nicht komplett fest. Jeder Stern verfügt zusätzlich über eine gewisse Eigenbewegung, und das kann dazu führen, dass im Laufe von sehr langen Zeiträumen die Distanzen zwischen einzelnen Sternsystemen leicht variieren. Das führt aber in der Regel nicht zu Kollisionen.  

Was sind Rogue Stars?  

Anders bei dem Stern Gliese710. Er bewegt sich völlig unabhängig von den anderen Sternen und nimmt nicht an ihrem galaktischen Rhythmus um das Zentrum der Milchstraße teil. Solche Sterne bezeichnet man als Rogue Stars, auf Deutsch könnte man das als Schurkensterne übersetzen. Man unterscheidet zwei Arten von Rogue Stars, innergalaktische und intergalaktische Rogue. Die innergalaktischen befinden sich zwar noch in einer Galaxie, entziehen sich aber dem galaktischen Jahr und fliegen herum, wie sie wollen. Die intergalaktischen haben ihre Galaxie verlassen und treiben nun komplett verloren in den schwarzen Leeren des Kosmos fernab jeder Galaxie.  

Position von Gliese 710 in 1,36 Millionen Jahren
Position von Gliese710 in 1,36 Millionen Jahren

So ein Schicksal als Ausgestoßener hat Gliese710 noch nicht erlitten. Er befindet sich noch in der Milchstraße – was schlecht für uns ist, denn er rast auf uns zu. Und in kosmischen Maßstäben wird er unser Sonnensystem schon sehr bald marodierend durchqueren. In einer Forschungsarbeit dazu heißt es: “Dieses Ereignis wird die stärkste Störung in der Zukunft und Vergangenheit des Sonnensystems sein. Wir können erwarten, dass dieser Stern den stärksten Einfluss auf die Oortschen Wolke in den nächsten zehn Millionen Jahren haben wird.”   

Also was wird genau mit Gliese710 geschehen?  

Die Forscher haben errechnet, dass Gliese in 1,25 Millionen Jahren unser Sonnensystem treffen wird. Das ist in kosmischen Maßstäben gar nichts, quasi ein Wimpernschlag. Zum Vergleich: Die Erde existiert bereits seit knapp 4,5 Milliarden Jahren, das Gliese-Ereignis geschieht erst in anderthalb Millionen Jahren. Gliese wird nicht frontal in das Sonnensystem hereinkrachen, sondern er wird die Außenbereiche, und zwar die sogenannte Oortsche Wolke treffen.   Die Oortsche Wolke ist ein weit entfernter Bereich, der die letzte Grenze des Sonnensystems darstellt. Hier ist die Schwerkraft der Sonne gerade noch stark genug, um Objekte wie Kometen und Staubteilchen in ihrem Bann zu halten.

Mehr Science-News? Dann hol dir unseren Newsletter!

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Die Oortsche Wolke ist bislang noch nicht zweifelsfrei nachgewiesen, aber das liegt nur daran, dass unsere technischen Mittel zu schlecht sind, um sie zu sehen. Wir reden hier über kleinste Partikel und Steinchen, die unfassbar weit weg sind; einige Forscher vermuten, dass die Oortsche Wolke sich über ein Lichtjahr erstrecken könnte.  

Auch wenn die Oortsche Wolke noch nicht mit einem Teleskop gesichtet wurde, muss es sie geben – denn an einem bestimmten Punkt muss die Grenze liegen, an der die Schwerkraft der Sonne langsam die Überhand verliert und die Schwerkraft anderer Sterne innerhalb der Galaxis stärker wird, und genau an dieser Grenze müssen sich sphärenartig Objekte um unser Sonnensystem anordnen.  

Darstellung der Oortschen Wolke (Pablo Carlos Budassi_Wikimedia Commons)
Darstellung der Oortschen Wolke (Pablo Carlos Budassi_Wikimedia Commons)

Gliese710 trifft auf Oortsche Wolke  

In diese Ansammlung von Kometen und Asteroiden wird Gliese hineinmanövrieren und dabei wird er nicht nur die entferntesten Außenbereiche der Oortschen Wolke treffen. Nach neuesten Berechnungen wird er uns seinen ungewollten Besuch in einer Entfernung von nur 62 Lichttagen abstatten, das ist für menschliche Maßstäbe natürlich immer noch weit weg, aber kosmisch gesehen muss man sagen: Er wird hundertprozentig durch unser Sonnensystem rasen.  

Von der Erde aus wird das ein spektakulärer Anblick, Gliese wird deutlich am Himmel zu sehen sein. Er wird heller sein als die großen Planeten Jupiter und Saturn, die man deutlich am Nachthimmel sehen kann. Gliese wird man sogar tagsüber am Himmel wahrnehmen können.  

Wie gefährlich ist das?  

Der Vorbeiflug von Gliese an sich wird das irdische Leben wohl nicht gefährden, es wird nicht zu Schwerkraftveränderungen kommen, die unsere Planetenbahnen durcheinanderwerfen würden. Aber Gliese wird in der Oortschen Wolke für Chaos und Verwüstung sorgen. Er wird dort jede Menge Asteroiden und Kometen aus ihren Bahnen werfen und sie in Richtung des inneren Sonnensystems schleudern.  

Das plüschigste Schwarze Loch aller Zeiten – jetzt kaufen!

Es wird damit gerechnet, dass er jedes Jahr mindestens zehn von der Erde aus sichtbare neue, langperiodische Kometen erzeugen wird. Aber es ist natürlich auch denkbar, dass Gliese einige Brocken genau auf Kollisionskurs mit der Erde schicken wird. In ihrer Arbeit gehen die Forscher davon aus, dass die Häufigkeit von Einschlägen auf der Erde um mindestens fünf Prozent steigen wird.  

DART-Projekt der NASA  

Da wir nicht genau wissen, mit was für Brocken wir zu rechnen haben, steigt auch die Wahrscheinlichkeit eines planetenvernichtenden Einschlags. Zum Glück hat die NASA gerade erfolgreich ihr DART-Projekt abgeschlossen. Sie rammte den armen kleinen Asteroiden Dimorph mit einer Sonde, während eine andere kleine Sonde genau aufzeichnete, wie groß die durch die Kollision entstandene Bahnablenkung von Dimorphos war. Das ist ein wichtiger Schritt für die Abwehr von zukünftigen gefährlichen Asteroiden, denn wir wissen nun, wie man einen Asteroiden treffen muss, um seine Bahn in einem gewissen Maß zu verändern.

Wollt ihr mehr über dieses Thema erfahren? Dann schaut mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Mysteriöser Außenseiter: Neue Erkenntnisse zu Planet 9

Darstellung von Planet 9

Wer kennt noch Planet 9? Dieses mysteriöse Himmelsobjekt weit draußen im Sonnensystem? Jetzt gibt es Neuigkeiten! Und das ändert wirklich alles bei der Suche nach diesem geheimen Planeten.

Die Suche nach neuen Planeten in unserem Sonnensystem war schon immer einer der spannendsten und prestigeträchtigsten Aspekte der Astronomie. Die Planeten Uranus und Neptun etwa wurden erst im 18. beziehungsweise 19. Jahrhundert entdeckt. 1930 dann entdeckte man in den fernen Bereichen des Sonnensystems den Pluto und die Freude war riesig. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Lange Zeit dachte man, dass damit alle Planeten des Sonnensystems entdeckt wären. Doch seit einiger Zeit haben Astronomen da Zweifel. Das Sonnensystem ist viel größer als die meisten Leute denken, es reicht noch weiter über den Pluto hinaus, wohl bis hin zur ominösen Oortschen Wolke, eine schalenförmige Ansammlung von Staub, Steinchen, Kometen und Gas, die unser Sonnensystem umgibt. Dieses noch nicht hundertprozentig bewiesene Gebilde ist so gigantisch, dass die Sonde Voyager 1 es erst in 300 Jahren erreichen wird – und erst in sage und schreibe 30.000 Jahren wird Voyager 1 die Oortsche Wolke komplett durchquert haben. Irgendwo in diesen unendlichen Weiten unseres Sonnensystems könnte sich doch gut noch ein Planet verbergen. Und es gibt sogar Indizien auf diesen geheimnisvollen Planet 9. 

Darstellung der Oortschen Wolke

Gravitative Störungen hinter dem Pluto

Untersuchungen der Asteroiden in den Bereichen hinter dem Pluto ergaben, dass deren Umlaufbahnen in einer merkwürdigen Weise gebündelt zu sein scheinen, als ob sie durch ein größeres Objekt gravitativ gestört würden. Aus diesen Bahnstörungen kann man auf die Eigenschaften des potentiellen Planeten 9 zurückrechnen. Demnach müsste er eine Masse von etwa fünf Erden und einen Bahnabstand von einigen 100 bis 1.000 Astronomischen Einheiten haben. Mit anderen Worten: Seine Größe und Entfernung wären genau so, dass er bei Himmelsdurchmusterungen unfassbar schwer zu entdecken wäre. Dementsprechend ist das bisher auch noch niemandem gelungen und daher haben sich nun zwei britische Astronomen von der Open University mal mit einer neuen Methode auf die Suche begeben. 

Sie suchten das äußere Sonnensystem nach Infrarotdaten ab. Eine ziemlich schlaue Idee, da Planet 9 zwar vermutlich zu weit entfernt wäre, um ihn optisch finden zu können, aber die abgestrahlte Infrarotstrahlung müsste mit empfindlichen Teleskopen eigentlich auffindbar sein. Als die beiden Forscher die Daten durchgingen, sah es dann auch direkt so aus, als hätten sie gleich mehrere Treffer gelandet. In der veröffentlichten Forschungsarbeit heißt es: “Wir haben eine Methode zum Auffinden von Riesenplaneten im äußeren Sonnensystem erforscht, indem wir ihre thermische Emission und Eigenbewegung im fernen Infrarot ermittelt haben, die mit dem InfraRed Astronomical Satellite und dem AKARI Space Telescope aufgenommen wurden. Wir fanden 535 potenzielle Kandidaten mit passenden Signaturen der spektralen Energieverteilung.”

Viele Kandidaten für Planet 9

535 Kandidaten für Planet 9?! Das ist ja wie beim Vorsingen einer gewissen RTL-Castingshow. Nur wie auch dort, ist es sehr zweifelhaft, ob einer der Kandidaten sich wirklich als Superstar entpuppt. Die Planet-9-Kandidaten sehen auf den ersten Blick allesamt sehr vielversprechend aus. Ausgehend von der Energieverteilung ihrer Spektren wiesen die meisten dieser Kandidaten Bahnabstände von weniger als 1.000 astronomischen Einheiten und Massen von weniger als der des Neptuns auf – das alles entspricht genau den Eigenschaften, die man für Planet 9 annimmt. Aber wie kann das sein, dass all diese Kandidaten so gut passen? Gibt es etwa nicht nur Planet 9, sondern auch Planet 10,11, 12, 13, 14, 15…

Wo ist denn nun unser rätselhafter Planet 9? Die Ergebnisse machten die britischen Astronomen etwas stutzig. Und ihnen kam eine mögliche Erklärung in den Sinn: Der galaktische Zirrus. Das ist kein neuer Superheld von Marvel oder The Boys, viel mehr handelt es sich um galaktische fadenförmige Strukturen, die im Weltraum über einem Großteil des Himmels zu sehen sind und Licht im fernen Infrarotbereich aussenden. Diese Strukturen bestehen größtenteils nur aus winzigen Staubteilchen, Kohlenstoff, der irgendwann mal in Supernova-Explosionen entstanden ist und in den Weltraum gepustet wurde. Der Name kommt daher, dass diese Strukturen augenscheinlich eine gewisse Ähnlichkeit mit Cirrus-Wolken haben, wie man sie manchmal auf der Erde sehen kann. 

Cirrus-Gas im Sternbild Orion

Im inneren Bereich unseres Sonnensystems kommt dieser galaktische Zirrus nicht vor, weil die Sonne diese Staubkörnchen verdrängt. Doch ab einer Entfernung von 1.000 astronomischen Einheiten beginnt der Zirrus. Ihr ahnt vielleicht schon, was das für unsere 535 Kandidaten bedeuten könnte. Die britischen Forscher sind ihre Daten einzeln per Hand durchgegangen und haben nach und nach festgestellt, dass es sich bei allen Kandidaten um Infrarotstrahlung aus dem galaktischen Zirrus handelt. Sie alle waren nur Infrarotstrahlung vom galaktischen Rauch. Was anfangs so vielversprechend aussah, entpuppte sich also im wahrsten Sinne des Wortes als Schall und Rauch.

Rächt sich bald auch Planet 9? Pluto tut es bereits.

Holt euch jetzt dieses tolle Pluto-Shirt und unterstützt den kleinen Zwergplaneten

Die beiden Forscher schreiben dazu: “Die Untersuchung der Infrarotbilder dieser Kandidaten deutet darauf hin, dass keiner von ihnen überzeugend genug ist, um eine Weiterverfolgung zu rechtfertigen, da sie sich alle innerhalb oder in der Nähe von galaktischen Zirruswolken befinden, die höchstwahrscheinlich die Quelle des Ferninfrarotflusses sind.”

Planet 9 existiert vermutlich doch nicht – oder ist er ein Schwarzes Loch?

War die gesamte Forschungsarbeit also umsonst? Nein, denn im Umkehrschluss können wir eine ziemlich gewichtige Erkenntnis daraus ziehen. Wenn es keine einzige Infrarotsignatur gibt, die auf Planet 9 hinweist, dann spricht leider vieles dafür, dass Planet 9 nicht existiert. Denn, wenn sogar galaktische Staubkörner stärkere Infrarotstrahlung aussenden als dieser Planet, dann würde ich sagen, gibts ihn nicht. In einem Artikel bei Universe Today wurde es sehr schön formuliert: “Es stellt sich also heraus, dass diese Kandidaten keine Planeten sind, sondern die Echos eines schwachen Nebels. Damit ist Planet 9 so gut wie ausgeschlossen. Die Hoffnung auf einen weiteren Planeten hat sich in den Wolken verloren.”

Bliebe noch die Außenseitertheorie, dass Planet 9 in Wahrheit ein Mini-Schwarzes-Loch ist, das sich im äußeren Sonnensystem versteckt hält. Das würde erklären, weshalb die Bahn der dortigen Asteroiden gestört ist, wir von diesem Objekt aber keine Strahlung wahrnehmen. Aber ich gebe zu, dass das schon sehr sehr unwahrscheinlich ist. 

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Riesen-Komet rast auf Sonnensystem zu

Ein Komet von absolut gigantischem Ausmaß rast auf das innere Sonnensystem zu. Nun hat die NASA spektakuläre Aufnahmen gemacht.

Kometen sind eisige Klumpen, die einsam durch das Sonnensystem wandern. Sie unterscheiden sich von Asteroiden durch ihren höheren Eisanteil. Wenn Kometen auf ihrer Reise durch das Sonnensystem der Sonne näher kommen, schmilzt das Eis und wird nach hinten weggeweht. Die energiereiche Strahlung der Sonne, der sogenannte Sonnenwind, energetisiert das geschmolzene Material und bringt es zum Leuchten. So entsteht der für Kometen charakteristisch leuchtende Schweif. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Die meisten Kometen sind relativ klein. Das Sonnensystem ist voller Eisbrocken, die mehrere Meter oder auch wenige Kilometer groß sind. Der bekannte Halleysche Komet, der übrigens im Jahre 2061 wieder von der Erde aus sichtbar sein wird, ist mit 15 Kilometer Durchmesser einer der größeren Vertreter. Doch im Vergleich zu dem Riesenkometen, der sich uns nun nähert, ist selbst der Halleysche Komet ein absoluter Winzling.  Der Komet C/2014 UN271, nach seinen Entdeckern auch Bernardinelli-Bernstein genannt, besitzt einen Durchmesser von knapp 140 Kilometern. In dieser Darstellung unten seht ihr ganz rechts den Riesen Bernardinelli-Bernstein und links ganz winzig den Halleyschen Kometen. 

Vergleich der verschiedenen Kometengrößen

Bernardinelli-Bernstein ist wirklich ein absoluter Kometengigant. Man hatte ihn schon vor einigen Monaten erspäht, doch nun ist es NASA-Wissenschaftlern gelungen, ihn so genau wie noch nie zu untersuchen und seine unglaubliche Größe definitiv zu bestätigen. Das Hubble-Teleskop hat einen genauen Blick auf Bernardinelli-Bernstein geworfen und diese beeindruckenden Bilder gemacht. 

Hubble-Fotos von dem Riesen-Kometen

Als Laie denkt man jetzt: Ok, das sind nur irgendwelche blauen Pünktchen. Aber die NASA-Forscher konnten anhand der neuen Hubble-Aufnahmen die exakte Größe, Entfernung und Geschwindigkeit des Kometen ausrechnen. Und so schreiben sie in ihrer nun erschienen Arbeit: “Wir haben immer vermutet, dass dieser Komet groß sein muss, weil er in einer so großen Entfernung so hell ist. Wir können nun bestätigen, dass C/2014 UN271 der größte jemals entdeckte langperiodische Komet ist.”

Zwar nicht aus Eis, aber trotzdem cool!

Bruchstück eines großen Eisenmeteoriten aus Campo del Cielo in Argentinien. Mitgeliefert wird ein Echtheitszertifikat. Verschiedene Größen verfügbar. 

Woher kommt der Komet?

Ganz klar: Vom äußeren Rand des Sonnensystems, der sogenannten Oortschen Wolke. Das ist ein weit entfernter Bereich, der die letzte Grenze des Sonnensystems darstellt. Hier ist die Schwerkraft der Sonne gerade noch stark genug, um Objekte wie Kometen und Staubteilchen in ihrem Bann zu halten. Die Oortsche Wolke ist bislang noch nicht nachgewiesen, aber das liegt nur daran, dass unsere technischen Mittel zu schlecht sind, um sie zu sehen. Aber die Gesetze der Physik gebieten, dass es sie geben muss – denn an einem bestimmten Punkt muss die Grenze liegen, an der die Schwerkraft der Sonne langsam die Überhand verliert und die Schwerkraft anderer Sterne innerhalb der Galaxis stärker wird. 

Man nimmt an, dass die Oortsche Wolke gigantische Ausmaße hat, sie könnte sich über 1,6 Lichtjahre erstrecken. Anders gesagt: Selbst mit Lichtgeschwindigkeit bräuchtet Ihr noch 1,6 Jahre, um das Ende der Oortschen Wolke zu erreichen. Kaum vorstellbar was sich in diesen noch unbekannten Bereichen des Sonnensystems verbergen mag. Kometen wie Bernardinelli-Bernstein helfen uns, mehr über die geheimnisvolle Oortsche Wolke herauszufinden. Denn, wenn wir nicht zur Oortschen Wolke kommen, dann können wir immerhin Objekte untersuchen, die von der Oortschen Wolke zu uns kommen. 

Der Astronom David Jewitt sagt: “Dieser Komet ist buchstäblich die Spitze des Eisbergs von Tausenden von Kometen, die zu schwach sind, um in den entfernteren Teilen des Sonnensystems gesehen zu werden.” Und Bernardinelli-Bernstein befindet sich wirklich auf einer ausgiebigen Reise und es wird lange Zeit dauern, bis er seine Heimat, die Oortsche Wolke wieder erreichen wird. Er befindet sich auf einer derart elliptischen Umlaufbahn um die Sonne, dass er etwa drei Millionen Jahre für einen Umlauf benötigt. Das ist wirklich mal eine Odyssee von kosmischem Ausmaß. 

Kann der Riesenkomet uns denn gefährlich werden? 

Derzeit verringert er seinen Abstand zur Erde. Seine größte Annäherung an die Sonne – das sogenannte Perihel – wird er im Jahr 2031 erreichen. Dann wird Bernardinelli-Bernstein noch etwa eine Milliarde Kilometer von der Sonne entfernt sein, bevor er sich auf seiner eierförmigen Bahn wieder nach außen wendet und die lange Heimreise antritt. Und wie weit ist er dann von der Erde weg? Ungefähr elf astronomische Einheiten, also elf mal der mittlere Abstand zwischen der Erde und der Sonne, er wird also irgendwo in der Näher der Bahn des Saturns herumschwirren. 

Künstlerische Darstellung des Kometen Bernardinelli-Bernstein

Er ist also keine Gefahr für die Erde, aber vielleicht eine gute Chance diesen Giganten dann genauer zu untersuchen. Bernardinelli-Bernstein ist der Sonne wohl noch nie so nahe gekommen, wie für 2031 berechnet. Im Gegensatz zu vielen anderen Kometen, die schon oft ihre Bahn um die Sonne absolviert haben, ist er sozusagen noch jungfräulich. Und so ein unberührter, urtümlicher Komet, der bisher noch nicht der Strahlung der Sonne in hohem Maße ausgesetzt war, könnte uns eine Menge über die Zustände in der Oortschen Wolke verraten und vielleicht sogar etwas über die Entstehung des Sonnensystems und wie das Wasser auf die Erde kam – denn man vermutet, dass Kometen Zeitzeugen aus der Entstehungsphase des Sonnensystems sind. Sie bestehen im Prinzip aus dem Bauschrott, der bei der Entstehung der Planeten übrig blieb. Das übrig gebliebene Zeug schwirrt heute noch als Komet oder Asteroid durch das Sonnensystem. Ich denke, dass aber auch schon vor 2031 immer mehr Aufnahmen von Bernardinelli-Bernstein entstehen, denn je näher er kommt, desto besser können wir ihn untersuchen. Wenn das Hubble-Teleskop also vielleicht nächstes Jahr noch mal schaut, werden wir schon wesentlich schärfere Bilder von dem Kometenungetüm bekommen.

Ihr wollt mehr über den Kometen Bernardinelli-Bernstein erfahren? Dann schaut euch das neue Video von Astro-Tim an:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Wie ist das möglich: Voyager-Sonden kommen zurück?

Die Voyager-Sonden erkunden die äußersten Bereiche des Sonnensystems und sind die von Menschen gebauten Objekte, die bisher am tiefsten in den Kosmos vorgedrungen sind. Doch nun nähern sie sich wieder der Erde an – was ist denn da los?

Es gibt wohl kaum Sonden, die ein größerer Erfolg waren, als die Voyager-Sonden. Diese beiden Schwestersonden wurden Ende der 70er Jahre in den Weltraum befördert. Sie sind immer noch in Betrieb und lassen sich sogar noch anfunken. Viele der bis heute besten Bilder der Gasplaneten Jupiter, Saturn, Uranus und Neptun verdanken wir Voyager 1 und Voyager 2. Und nun lüften sie für uns sogar Geheimnisse über den noch weitgehend unbekannten Teil des Sonnensystems weit hinter dem Pluto. 

Der Saturn, fotografiert von Voyager 2

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Haben die Voyager-Sonden das Sonnensystem verlassen?

So haben die Voyager-Sonden vor einiger Zeit die sogenannte Heliosphäre durchquert, eine Art Schutzschild, den unsere Sonne im interstellaren Raum erschafft. Vielfach wurde daraufhin in den Medien geschrieben, dass die Voyager-Sonden nun das Sonnensystem verlassen hätten – das ist nicht zutreffend. Das Ende des Sonnensystems befindet sich in der sogenannten Oortschen Wolke. Das ist der Bereich, in dem die Schwerkraft der Sonne gerade noch stark genug ist, um Objekte in ihren Bann zu ziehen. Dahinter nimmt die Schwerkraft anderer Sterne außerhalb des Sonnensystems Überhand. So umgeben in der Oortschen Wolke unzählige Objekte wie Kometen, Staubpartikel und Asteroiden unser Sonnensystem wie so eine Art kosmische Schale. Wenn die Voyager-Sonden diese Grenze überqueren, kann man davon sprechen, dass sie das Sonnensystem verlassen haben – das wird allerdings noch ein wenig dauern. In ungefähr 30.000 Jahren werden die Voyager-Sonden die Oortsche Wolke durchquert haben.

Darstellung der Oortschen Wolke

Wenn die Voyager-Sonden dann in ferner Zukunft ein fremdes Sternsystem erreichen werden, haben sie eine Botschaft von uns Menschen dabei: Die sogenannten Golden Records. Auf ihr sind Bild- und Audio-Informationen über die Menschheit gespeichert. Sorgsam wurden damals einige Songs ausgesucht, die verschiedene Kulturkreise repräsentieren sollen. Von afrikanischer Trommelmusik, über bulgarische Volkslieder bis zu fetzigen Songs von Chuck Berry ist alles dabei. 

Hatte schon Besuch von Voyager: Der Saturn

Hol dir deinen Saturn jetzt nach Hause!

Nähern sich die Voyager-Sonden DER auf die Erde an?

Momentan befinden sich die Voyager-Sonden noch innerhalb des Sonnensystems und haben noch nicht mal den inneren Rand der Oortschen Wolke erreicht. Aber was hat es denn nun damit auf sich, dass die Voyager-Sonden sich der Erde nähern? Wie ist das möglich, wenn sie doch schon seit über 40 Jahren durch den Kosmos rasen? Das Näherkommen der Voyagers ist mit der Bewegung unserer Erde innerhalb des Sonnensystems zu erklären. Zwar bewegen sich die beiden Sonden permanent in Richtung äußeres Sonnensystem – aber während das geschieht, bewegt die Erde sich natürlich auch. Und die Erde bewegt sich in ihrer Umlaufbahn für einige Monate im Jahr schneller auf die Raumsonden zu, als diese sich entfernen. 

Die Bewegung der Erde um die Sonne ist schneller als die Bewegung der Voyager-Raumsonden. Die Erde bewegt sich mit einer Geschwindigkeit von 30 Kilometer pro Sekunde durchs All. Voyager 1 bewegt sich mit einer Geschwindigkeit von 17 Kilometer pro Sekunde durchs All, Voyager 2 mit 15 Kilometer pro Sekunde – beide also wesentlich langsamer als die Erde. Durch diese Differenz in der Geschwindigkeit gibt es eine Zeit im Jahre, also einen Zeitraum der Erdbewegung um die Sonne, in der wir den Sonden wieder näher kommen. Die Voyagers bewegen sich natürlich weiterhin in Richtung Ende des Sonnensystems, es sind wir, die ihnen näher kommen. 

So weit ist Voyager 2 von der Erde entfernt

Schauen wir uns das Ganze mal konkret anhand der Entfernung von Voyager 2 an. Seit dem 22. Februar kommen wir ihr wieder näher. An diesem Tag betrug die Entfernung zwischen Erde und Voyager 2 130,05 astronomische Einheiten. Eine astronomische Einheit ist der mittlere Abstand zwischen der Erde und der Sonne – man verwendet diese Einheit oft um große Entfernungsmaßstäbe innerhalb des Sonnensystems zu beschreiben. Für diejenigen von euch, die es ganz genau wissen wollen: Eine astronomische Einheit beträgt 149.597.870.700 Meter. 

Entfernung von Voyager 2

Am 4. Juni wird der Zeitraum enden, innerhalb dessen wir Voyager 2 näher kommen. Dann wird die Entfernung nur noch schlappe 129,7 astronomische Einheiten betragen. Allein durch die Position der Erde auf ihrer Bahn um die Sonne machen wir in diesem Zeitraum also knapp eine astronomische Einheit gut! Aber die Annäherung ist natürlich nur von kurzer Dauer. Ab Juni wird die Entfernung wieder zunehmen und auch wenn sie sich nächstes Jahr abermals für kurze Zeit verringern wird, wird sie netto natürlich immer größer und größer. Wir müssen den Voyager-Sonden also endgültig Au Revoir sagen.

Ihr wollt mehr über die Voyager-Sonden erfahren? Dann schaut euch das neue Video von Astro-Tim an:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz