Schwerkraft: Hatte Einstein Unrecht?

Darstellung der Schwerkraft

Sind Einsteins Theorien über die Schwerkraft falsch? Und kommen wir dem Rätsel der Dunklen Energie näher? Forscher haben in einem spektakulären Experiment einen Durchbruch erzielt.

Wie schaffen wir es eigentlich, auf der Erde zu stehen? Ganz einfach: durch Schwerkraft. Diese fundamentale Kraft des Universums ist gar nicht so einfach zu verstehen und gibt Forschern immer wieder erhebliche Rätsel auf. Wir spüren sie permanent, sie hält unsere Erde im Orbit um die Sonne, sie hält die gesamte Galaxis, die Milchstraße, zusammen. Aber was ist Schwerkraft? Wodurch entsteht sie? 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Dunkle Energie: Expansion des Kosmos wird immer schneller

Licht beispielsweise entsteht durch Photonen, winzige Lichtteilchen. Wodurch entsteht aber Schwerkraft? Es verdichten sich zwar die Hinweise, dass das mysteriöse Higgs-Boson das Elementarteilchen der Gravitation sein könnte, aber die komplette Auswirkung der Schwerkraft auf die Raumzeit lässt sich damit noch nicht gänzlich erklären. Das größte Mysterium ist die Beziehung zwischen der Schwerkraft und der Dunklen Energie. Schwerkraft hält die Dinge zusammen. In den kleineren Bereichen des Kosmos ist sie die dominierende Kraft. Unsere Milchstraße etwa ist gravitativ an die Andromeda-Galaxie gebunden, weshalb die beiden Sterneninseln sich aufeinander zubewegen und in ferner Zukunft zu einer Riesengalaxie verschmelzen werden. Aber in den ganz großen Bereichen des Kosmos verliert die Schwerkraft ihre Dominanz, hier übernimmt die Dunkle Energie. 

Nichts verstanden? Was genau nicht?

Die Antwort lässt sich aus dem Tafelbild eigentlich leicht herleiten. Hol dir jetzt das nerdige T-Shirt!

Der Kosmos expandiert – und das schon seit dem Urknall, seit 13,8 Milliarden Jahren. Aber obwohl der Urknall so lange her ist, schwächt sich diese Expansion nicht ab, sondern beschleunigt sich. Der Weltraum wird immer schneller immer größer. Es muss eine mysteriöse Kraft geben, die ihn weiterhin zum wachsen bringt. Da niemand weiß, was das sein könnte, bezeichnet man diese Kraft als Dunkle Energie. 

Das Universum expandiert

Ist die Theorie der Schwerkraft falsch?

Es gibt viele Ideen, was diese Dunkle Energie sein könnte. Eine Art Energiefeld quer durch Zeit und Raum, das einen abstoßenden Druck wie eine Art Antigravitation ausübt. Beweise dafür gibt es nicht. Da drängt sich der Verdacht auf, dass Dunkle Energie vielleicht in der Form gar nicht existiert, sondern mit unserer Theorie der Schwerkraft etwas falsch sein muss. Einige Forscher denken, dass die Schwerkraft sich auf den großen kosmischen Skalen anders verhält als im Kleinen. Während sie hier alles zusammenhält, drückt sie im Großen vielleicht Dinge auseinander. Oder sie hat sich im Laufe der Entwicklung des Kosmos verändert. Vielleicht war sie in den Anfangstagen des Universums stärker und wurde dann schwächer. Eine kontinuierliche Abnahme der Stärke der Gravitation seit einigen Milliarden Jahren würde die stärker werdende Beschleunigung ziemlich gut erklären, oder? 

Solche alternativen Schwerkrafttheorien erfreuen sich großer Beliebtheit und mangels Indizien könnte das genau so gut wahr sein wie die Idee der mit der Gravitation konkurrierenden Dunklen Energie. Einziges Manko: Eine variierende Schwerkraft über die Zeit hinweg stünde im Widerspruch mit Albert Einsteins Allgemeiner Relativitätstheorie. 

Gravitationslinsen: Forscher suchen nach Krümmung in Raumzeit

Ein Forscherteam von der Dark Energy Survey Collaboration hat nun in einem spektakulären Experiment diese alternative Gravitationstheorie auf die Probe gestellt, um das Verhältnis zwischen Schwerkraft und Dunkler Energie zu klären. Sie haben einen der bisher präzisesten Tests von Albert Einsteins Allgemeiner Relativitätstheorie durchgeführt und dabei riesige kosmische Entfernungen betrachtet. Wir reden hier von Entfernungen von bis zu fünf Milliarden Lichtjahren. Mal zum Vergleich: Unsere Milchstraße besitzt einen Durchmesser von nur hund100.000 bis 200.000 Lichtjahren. Auf dieser gigantischen Skala haben die Forscher Galaxien untersucht und subtile Verzerrungen gemessen, die durch die Schwerkraft entstehen, wenn sie die Raumzeit verformt. Stellt euch die Raumzeit wie eine Art für uns unsichtbares Trampolin vor, das durch die Gravitation der Himmelskörper eingedellt wird. Genau nach diesen Raumzeittrampolindellen suchten die Forscher. 

Ein Schwarzes Loch als Gravitationslinse

Den Effekt, den die Forscher sich zunutze machten, nennt man Gravitationslinseneffekt. Bei schweren, uns näher gelegenen Objekten, wie Schwarzen Löchern, innerhalb der Galaxis, ist dieser Effekt relativ stark. Auf den großen kosmischen Skalen, bei weit entfernten Galaxien ist er eher schwach, weshalb man ihn in diesem Fall als schwache Gravitationslinse bezeichnet. Durch das Ausfindigmachen dieser schwachen Gravitationslinsen konnten die Dark Energy Survey Wissenschaftler die Effekte der Schwerkraft großflächig sogar in der Vergangenheit bestimmen, denn jeder Blick in den Weltraum ist ein Blick in der Zeit zurück. Wir sehen die Objekte so, wie sie aussahen, als das Licht sich auf den Weg gemacht hat. Milliarden Lichtjahre entfernte Galaxien sehen wir also weit, weit in der Vergangenheit. 

Gravitation im Universum gleich stark; Dunkle Energie existiert wahrscheinlich

Die Forscher untersuchten knapp 100 Millionen Galaxien in unterschiedlichen Entfernungen nach Hinweisen, dass die Schwerkraft an irgendeinem Zeitpunkt des Kosmos schwankte. Und was haben sie entdeckt? Nichts. Keine Abweichung. Die Gravitation war während der gesamten Geschichte des Universums gleich stark. Tatsächlich verhalten sich die untersuchten Galaxien, von denen die ältesten Milliarden Jahre alt sind, genau so, wie es Einsteins Theorie es vorhersagt. Albert Einstein hat also mal wieder komplett Recht behalten.

Viele Gravitationslinsen auf einem Bild

Dennoch haben die Forscher etwas entdeckt. Und zwar, dass die alternativen Theorien der Gravitation wahrscheinlich nicht korrekt sind und dass Dunkle Energie wahrscheinlich existiert. Denn, wenn nicht die Gravitation selbst für die beschleunigte Expansion des Kosmos verantwortlich ist, dann wohl eben doch die ominöse Dunkle Energie. Was uns wieder mit der Frage zurücklässt: Was ist Dunkle Energie? Und ein paar letzte Zweifel an Einsteins Gravitationstheorie sind dennoch erlaubt. Die beteiligte Forscherin Agnès Ferté sagt: “Es gibt immer noch Raum, um Einsteins Gravitationstheorie in Frage zu stellen, da die Messungen immer präziser werden. Wir haben noch so viel zu tun, bevor wir für Euclid und Roman bereit sind. Deshalb ist es wichtig, dass wir weiterhin mit Wissenschaftlern auf der ganzen Welt an diesem Problem zusammenarbeiten.” Mit Euklid und Roman meint sie zwei geplante Weltraumteleskope, die uns den Antworten auf diese große Fragen erheblich näher bringen werden. Das Weltraumteleskop Euclid der ESA, das 2023 ins All starten soll, ist komplett auf die Suche nach Dunkler Energie ausgerichtet. Das Nancy Grace Roman Teleskop wird wie James Webb ein Infrarot-Weltraumteleskop sein, aber mehr auf den Blick auf die ganz großen kosmischen Skalen ausgelegt sein, während James Webb eher Einzelobjekte ins Visier nehmen kann. Nancy Grace Roman wird also dafür prädestiniert sein, die Zusammenhänge in Bereichen von Milliarden Lichtjahren genauer zu beleuchten. Es wird allerdings frühestens im Jahre 2026 starten. 

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz

Ferne Welten: James Webb fotografiert Exoplaneten

Künstlerischer Darstellung vom James-Webb-Teleskop und einem Exoplaneten

Das James-Webb-Teleskop hat erstmals ein Bild von einer außerirdischen Welt geschossen: einem Planeten in einem fremden Sternsystem. Astronomen sprechen von einem entscheidenden Moment. Und so sieht das Bild aus.  

Heute mal wieder etwas Bahnbrechendes: James Webb hat erstmals ein Bild eines Exoplaneten geliefert. Ein Foto eines Planeten, der sich nicht in unserem Sonnensystem befindet, sondern um einen fremden Stern innerhalb unserer Galaxis kreist. 

Wird verarbeitet …
Erledigt! Sie sind auf der Liste.

Aber ist das jetzt so etwas Besonderes? Man hat bereits über 5.000 Exoplaneten entdeckt – ein Bruchteil von der Anzahl an Exoplaneten, die es insgesamt in der Milchstraße gibt. Für alle Mathe-Freunde: Es gibt mindestens 200 Milliarden Sterne in der Milchstraße und um fast jeden davon drehen sich mindestens zwei Planeten. Dann kämen wir also schon auf 400 Milliarden Planeten alleine in unserer Galaxis und das ist schon eher eine pessimistische Rechnung. Ob es auf irgendeinem dieser Planeten außerirdisches Leben gibt? Diese Frage können wir vielleicht mit dem James-Webb-Teleskop beantworten. 

Transitmethode: James Webb kann direkt Exoplaneten ablichten

Es handelt sich bei der Aufnahme des Exoplaneten um eine Direktaufnahme. James Webb hat in Richtung dieses 350 Lichtjahre entfernten Sternsystems geschaut, Infrarotwellen aufgenommen und daraus konnte dann das Bild des Planeten erstellt werden. Das ist unglaublich; normalerweise konnten Exoplaneten fast ausschließlich indirekt aufgespürt und untersucht werden und zwar meist durch die Transitmethode. Man beobachtete fremde Sterne und zeichnete deren Helligkeit auf. Wenn es plötzlich zu einer Senkung der Helligkeit kam, die sich aber einige Zeit später wieder ausgeglichen hat, konnte man sich sicher sein, einen Exoplaneten gefunden zu haben. Denn in dem Moment, in dem ein Planet von uns aus gesehen vor seinem Stern entlang wandert, wird ein Teil des Lichts abgeschirmt und die Helligkeit sinkt. James Webb hingegen braucht keine indirekten Methoden, James Webb ist so leistungsstark, dass es Exoplaneten direkt anvisieren und entdecken kann und nicht darauf angewiesen ist, dass ein Planet erst mal vor seinem Stern vorbeiwandert. 

Und das eröffnet uns eine neue Ära der Planetenforschung. Der britische Astrophysik-Professor Sasha Hinkley sagt: “Dies sind die ersten direkten Bilder eines Exoplaneten, die mit James Webb aufgenommen wurden. Das ist ein transformativer Moment. Nicht nur für Webb, sondern auch für die Astronomie im Allgemeinen.” James Webb blickte in die Richtung des Sternbilds Centaurus und untersuchte den Stern HIP65426, der ungefähr doppelt so viel Masse wie unsere Sonne hat. 

James Webb: Foto von Exoplanet HIP65426b

James Webb: Foto des Exoplaneten

Oben seht Ihr die Aufnahmen des Exoplaneten HIP65426b. Auf den ersten Blick sehen die Aufnahmen nur wie verschwommene Punkt aus, aber denkt dran, es sind Direktaufnahmen dieser fernen Welt. Der Planet ist siebenmal so massereich wie der Jupiter, aber etwa dreimal weiter von seinem Stern entfernt als der Neptun von unserer Sonne. Es handelt sich also um einen eisigen Super-Jupiter. Die verschiedenen Farben entstehen durch Aufnahmen in verschiedenen Wellenlängen des Infrarotlichts. James Webb hat für die verschiedenen Infrarotbereiche jeweils eigene Instrumente an Bord. Die bläulichen Bilder stammen vom Nircam-Instrument, die rötlichen vom Instrument Miri. Das weiße Sternchen auf den Aufnahmen zeigt die Position des Sterns, um den sich der Exoplanet dreht, den man wegen der Helligkeit auf den Aufnahmen ausgeblendet hat. Diese Helligkeit des Zentralgestirns auszublenden, ist gar nicht so einfach. Denn für die Infrarotaugen von James Webb ist der Stern bis zu 10.000 Mal heller als der Exoplanet HIP65426b und überstrahlt die geringe Lichtmenge, die wir vom Planeten empfangen, komplett.

Auf der unteren Aufnahme seht Ihr wie James Webb dieses System standardmäßig sieht. Einfach ein großer heller Licht-Blob des Sterns, der alles andere über strahlt. Glücklicherweise ist das James-Webb-Teleskop mit speziellen Instrumenten ausgerüstet, den sogenannten Koronografen, oder auf englisch Coronagraph.

Aufnahme ohne Koronograf

Die äußeren Bereiche eines Sterns bezeichnet man als Corona. Wenn Koronografen genau vor einem Stern positioniert werden, können sie den Großteil des einfallenden Lichts blockieren. Koronografen werden zum Beispiel auch zur Erforschung der äußersten Schichten der Sonne eingesetzt, wie Ihr unten in einer spektakulären Aufnahme der NASA von unserer Sonne seht. Durch die Verwendung von Koronografen können wir bei unserer Sonne beispielsweise die Helligkeit ausblenden und dadurch Phänomene in ihren Randbereichen untersuchen wie etwa heftige Plasma-Ausbrüche, so genannte Protuberanzen. 

Wismut Kristall

Ebenfalls sehr fotogen: Der Wismut-Kristall

Dieser Kristall sorgt für Farbenspiele in deinem Mineralienregal!

Und James Webb kann mit Hilfe der Koronografen fremde Sterne ausblenden und so ihre Exoplaneten aufnehmen. Die Astronomin Aarynn Carter von der University of California beschreibt es so: “Die Aufnahme dieses Bildes war wie eine Schatzsuche im Weltraum. Zuerst konnte ich nur das Licht des Sterns sehen, aber mit einer sorgfältigen Bildbearbeitung konnte ich dieses Licht entfernen und den Planeten freilegen.”

Foto von Exoplaneten: Koronografen sind notwendig

Das klingt alles einfacher als es ist – denn leider kann auch der Koronograf nicht das komplette Licht des Sterns ausblenden. Die Astronomen müssen so ein System dann über einen längeren Zeitraum beobachten und können dann nach und nach in Detektivarbeit herausfinden, wo sich der Exoplanet versteckt. Das alles zeigt, um was für eine unglaubliche Maschine es sich beim James-Webb-Teleskop handelt. Die direkte Aufnahme von Exoplaneten gelang vorher nur in absoluten Einzelfällen, jetzt wird sie auf der Tagesordnung stehen. Und diese Daten zeigen auch, dass James Webb in der Lage sein wird, Planeten mit geringerer Masse als je zuvor zu entdecken. Vor James Webb waren wir meist auf die Entdeckung von Super-Jupitern beschränkt, weil die sehr groß, schwerfällig und kaum zu übersehen sind. Aber James Webb wird auch Exo-Uranuse und Exo-Neptuns direkt abbilden können, die nächsten Wochen und Monate werden also wirklich aufregend. 

Vergleich mit der Erde: Das Trappist-1-System

James Webb: Bald Foto von TRAPPIST-1

Vor allem Folgendes sorgt für Spannung: In den kommenden Monaten wird James Webb seine Spiegel auf TRAPPIST-1e richten, einen möglicherweise bewohnbaren Planeten von der Größe der Erde, der nur 39 Lichtjahre von der Erde entfernt ist. Das TRAPPIST-1-System ist vielleicht der vielversprechendste Ort für außerirdisches Leben, den wir kennen. Es enthält sieben erdähnliche Exoplaneten und wenn James Webb hier genauer hinschaut, ist das vermutlich die größte Chance für die Entdeckung von außerirdischem Leben, die es in der Menschheitsgeschichte jemals gab. Aarynn Carter sagt: “Ich denke, das Spannendste ist, dass wir gerade erst angefangen haben. Es werden noch viele weitere Bilder von Exoplaneten folgen, die unser Gesamtverständnis ihrer Physik, Chemie und Entstehung prägen werden. Vielleicht entdecken wir sogar bisher unbekannte Arten von Planeten.”

Ihr wollt mehr über dieses Thema erfahren? Dann schaut direkt mal in das Video von Astro-Tim rein:

Astronautennahrung, Eisenmeteorite und Plüschplaneten: In unserem Weltraum-Shop bleibt kein Wunsch offen. Kommt vorbei und stöbert in unseren Weltraum-Produkten.

Impressum und Datenschutz